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Analytic Tomographic Reconstruction

Much of medical imaging is performed by acquiring x-ray projection data onto a sheet of film or
other planar detector.  Chest radiography, mammography, angiography, and even dental x-rays are
examples of "plain-film" radiography or "x-ray projection imaging".  In these techniques, the three-
dimensional structure in an object (i.e., human body) is projected as an x-ray shadowgram onto a two-
dimensional detector.  Often this provides sufficient information to satisfy the clinical requirements of
the diagnostic task.  One can use projection imaging to find lung tumors, breast cancer, bone fractures,
and other disease states.

There are many cases, however, where using projection imaging techniques is inadequate for the
diagnostic task.  This occurs because the superposition of the complex anatomical structure of the human
body onto a two-dimensional image can obscure subtle disease states such as soft-tissue tumors
surrounded by soft-tissue organs (brain, liver, kidney).  For this applications, the invention of
tomography in the 1970's provided a revolution in the way that radiographic information was formed and
utilized in medical practice.  The term "tomography" means imaging ("graphy") a cut or slice ("tomo")
through the body, and generating a tomographic image conceptually is equivalent to slicing up the
human body like a loaf of bread, then pulling up a single slice and looking at its cut surface.  This allows
the diagnostician to see anatomical detail in one section of the body without superposition of overlying
or underlying structure.  Tomography is a central theme in many types of medical imaging used today,
and can be formed using x-ray imaging, nuclear medicine, magnetic resonance imaging, and ultrasound.

The technique of forming a tomographic image using x-rays or radionuclides ("nuclear
medicine"), and to a certain extent using magnetic resonance imaging (MRI) are equivalent.  We will
focus our discussion on x-ray tomography and radionuclide tomography since these are nearly identical.
In x-ray tomography, data are acquired by scanning the patient with an x-ray tube and detector so that x-
ray "projection data" are acquired across the body at multiple angles.  The process is similar in
radionuclide tomography in which we use a detector to acquire photons which are emitted by a
radiopharmaceutical taken up by different structures (i.e., organs, tissues, lesions) in the body.  We then
use a mathematical formula (callen an
"algorithm") to determine the
distribution of linear attenuation
coefficients (in the case of x-ray
imaging) or radionuclide concentration
(µCi/cm3 ) in the body (in the case of
radionuclide tomography) from the x-ray
or radionuclide projection data acquired
with the imaging equipment.  A gray-
scale can be assigned to the possible
values of the attenuation coefficient µ to
generate an image that shows the
anatomy of the body for that particular
tomographic slice.  Our goal in this
chapter is to describe the mathematics
with which we transform the
experimental projection measurements
to calculate the map of attenuation
coefficients across the object.
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We begin by describing an object
which lies in the x-y plane by the “density
function” µ(x,y). For x-ray imaging, the
function fµx,y) describes the spatial
distribution of linear attenuation
coefficients in one plane of the object.
(For radionuclide imaging, the function
µ(x,y) describes the spatial distribution of
radionuclide in the body.  We will
concentrate on x-ray tomography,
although the mathematics for radionuclide
tomography are essentially the same.)  As
mentioned above, we begin the
tomographic process by acquiring
“projection” data, obtained by scanning
an x-ray source and detector across
opposite sides of the object as shown in
Figure 1.  The source emits a beam of x-
rays that is attenuated by the structure in
the object while the x-ray beam passes
through the object.  The x-ray beam
emerging from the x-ray beam then is
recorded with a radiation detector.  Mathematically, it is convenient to define a stationary coordinate
system with x-y axes which are fixed in the stationary object.  Correspondingly, we define a rotating
coordinate system with rs axes such that the s-axis is parallel to the x-ray beam passing through the
object (Fig 1).  For a monoenergetic x-ray spectrum and a parallel-beam geometry, the photon fluence Φ
recorded with the object in the beam is related to the photon fluence Φo  measured with no object

Φ = Φo  exp
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In a x-ray imaging measurement, we record the attenuated x-ray intensity Φ acquired at the angle θ with
respect to the y-axis.  Each measurement obtained with the source-detector pair is called a “projection”
or “ray-sum”, and can be defined geometrically by the angle θ between the projection axis (i.e.,the “s-
axis”) and the y axis (Fig 1),and by the perpendicular distance r between the projection line and the s
axis.
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where the argument of the delta function δ describes the linear path along which the x-ray beam travels
in generating the projection image (Figure 2).  Our goal is to determine the density function (i.e., the
map of linear attenuation coefficients across the object) µ(x,y) from the set of projection data pθ(r)  
acquired across different radial positions r and for different projection angles θ.  This will be performed
using one of two equivalent techniques called Fourier Reconstruction and Filtered Backprojection.
These techniques will be described separately.
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Fig 2:  Rotated coordinate axis for tomographic data
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Fourier Reconstruction

The method of Fourier reconstruction relies on the following derivation, which shows that for a
given rotational angle θ, the Fourier transform of the projection data pθ(r)  is equal to the Fourier
transform of the density function µ(x,y) along the r-axis (Fig 2).  This can be shown by calculating the
Fourier transform of pθ(r)  as

P(ρ,θ) = ℑ[pθ(r) ] = ∫
+∞

∞−
pθ(r)  exp(-2πiρr) dr (17-3)
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We therefore see that the Fourier transform P(ρ,θ) of the projection function pθ(r)  is equal to the
Fourier transform of our density function µ(x,y) along the line s = 0 (i.e., along the rotated r-axis in the
xy-plane).  If this operation is repeated for different values of θ, we can obtain enough samples of the
P(ρ,θ) and use interpolation to fill in the entire spatial-frequency plane which is expressed in terms of
the coordinates (ρ,θ) or (u,v).  The resulting function P(u,v) then can be inverse Fourier transformed to
obtain the density function µ(x,y)

µ(x,y) = ℑ-1 [P(u,v)] = ∫∫
+∞

∞−

+∞

∞−
P(u,v) exp[2πi(xu + yv)] du dv (17-4)

where P(u,v) is obtained by multiple measurements of P(ρ,θ)

P(ρ,θ) = ℑ[pθ(r) ] (17-5)

Convolution Backprojection (or "Filtered Backprojection")

The Fourier Reconstruction method derived above is a general result which can be used for x-ray
CT, radionuclide tomography, and magnetic resonance imaging.  In fact, while it is generally used for
magnetic resonance imaging, it is not often used for x-ray CT or radionuclide tomography.  This occurs
because the Fourier Reconstruction methods requires that the entire set of projection data must be
acquired and Fourier transformed to determine P(u,v) ≡ P(ρ,θ), which we have shown is equivalent to
the Fourier transform of the density function µ(x,y) according to Equation 17-4.  After P(u,v) is
determined, it is inverse transformed to derive the density function µ(x,y) which in the case of x-ray CT
is a map (image) of the linear attenuation coefficients across the slice of the object, and which in the case
of radionuclide tomography is a map (image) of the radionuclide density across the slice of the object.
An alternative method called "Filtered Backprojection" or "Convolution Backprojection" provides an
alternative method of achieving the same result.  The advantage of "Filtered Backprojection" is that
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much of the calculation needed to form the image can be performed on each set of projection data pθ(r)  
for a given angle θ.  Compared with Fourier Reconstruction, Filtered Backprojection allows a greater
fraction of the calculation to be performed during the acquisition of the projection data.  Thus, the image
is available for viewing much sooner after the completion of the scan than in Fourier Reconstruction.

The method of Filtered Backprojection can be derived by starting with Equation 17-4, which
shows that the density function µ(x,y) is obtained as the inverse Fourier Transform of P(u,v), expressed
in cartesian coordinates in the spatial-frequency domain (u,v).  According to Equation 17-5, P(u,v) can
be obtained as the Fourier transform of the set of projection data pθ(r)  acquired with the imaging
system.  Thus, from Equation 17-4, we have

µ(x,y) = ℑ-1 [P(u,v)] = ∫∫
+∞

∞−

+∞

∞−
P(u,v) exp[2πi(xu + yv)] du dv (17-6)

We now write the Fourier transform P(u,v) in polar coordinates P(ρ,θ) = P(u,v), using the relationships
u=ρcosθ and v=ρsinθ, and expressing the differential area element du dv as ρ dρ dθ, where (ρ,θ) are
polar coordinates of (u,v) in the spatial frequency domain.  Therefore, Equation 17-6 can be written as

µ(x,y) = ∫∫
+∞

0
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0

π
P(ρ,θ) exp[2πi(x ρcosθ + y ρsinθ)] ρ dρ dθ (17-7)

= ∫∫
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|ρ| P(ρ,θ) exp[2πρi(x cosθ + y sinθ)] dρ dθ

We note from equation 17-7 that µ(x,y) can be obtained as the Fourier transform of the function
|ρ| P(ρ,q), where the Fourier transform is taken in terms of polar coordinates in the spatial frequency
domain.  While it appears difficult to perform this operation, we can circumvent this difficulty first by
noting that P(ρ,θ) is obtained from pθ(r) , which represent the projection data measured from the object.
In a real system, the projeciton data pθ(r)  are measured using detectors having finite width and using
finite sampling intervals such that the spatial frequency content of pθ(r) (and therefore of P(ρ,θ))  is
band-limited to some maximum spatial-frequency value M (i.e., we can assume safely that the Fourier
transform P has no spatial frequencies above some maximum M).  Thus, we can write Equation 17-7 as

µ(x,y) = ∫∫
−

M

M

π

0
|ρ| P(ρ,θ) exp[2πρi(x cosθ + y sinθ)] dρ dθ (17−8)

We also define a "kernel function", κ(ρ) = M{II(ρ/2M)-Λ(ρ/M), where

II(ρ/2M) = 


1 if |ρ| < M

0 if |ρ| > M
 (17-9)
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Λ(ρ/2M) = 


1-

|ρ|
M if |ρ| < M

 0 if |ρ| > M
 (17-10)

We now can express the inner integral of equation 17-8 in terms of the filtered-projection data p
*
θ ,

where

µ(x,y) = ∫
π

0
p
*
θ(r)  dθ (17−11)

where

 p
*
θ(r)  = ⌡⌠

0

M
   |ρ| P(ρ,θ) exp[2πρi(x cosθ + y sinθ)] dρ

= ∫
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κ(ρ) P(ρ,θ) exp[2πρi(x cosθ + y sinθ)] dρ

= ℑ-1[ ]κ(ρ) P(ρ,θ)   = ℑ-1[ ]κ(ρ)   ∗ ℑ-1[ ]P(ρ,θ)  (17-12)

Finally, we know that the inverse Fourier transform k(r) of the kernel κ(ρ) can be expressed as

k(r) = ℑ-1[ ]κ(ρ)   = ℑ-1[ ]M{II(ρ/2M)-Λ(ρ/M)   = 2M2  sinc(2Mr) - M2  sinc2(Mr) (17-13)

while from Equation 17-3 we know that the inverse Fourier transform of P(ρ,θ) is the projection
function pθ(r) 

pθ(r)  = ℑ-1[ ]P(ρ,θ)  (17-14)

Substituting Equation 17-13 and 17-14 into Equation 17-12, we have

p
*
θ(r)  = k(r) ∗ pθ(r) (17-15)

allowing Equation 17-11 to be expressed as

µ(x,y) = ∫
π

0
p
*
θ(r)  dθ = ∫

π

0
[ k(r) ∗ pθ(r) ] dθ  (17−16)

Equation 17-16 shows that we can acquire projection data pθ(r)  using the imaging system.  This process
is repeated at angular increments ∆θ for n angular samples, across an entire half-rotation of π radians
(n = π/∆θ).  After a single set of projection data p )(rθ are acquired at a fixed angle θ, the projection data
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are convolved or "filtered" with the kernel function k(r) then backprojected according to the integral in
Equation 17-16.  The backprojection of the entire set of filtered projection data forms the image
represented by the density function µ(x,y) as shown in Equation 17-16.

Sampling Considerations

One important aspect of designing a tomographic imaging system is developing criteria for the sampling
requirements of the projection data.  In particular, we want to know how many detectors we want to use
to acquire one projection data set (i.e., at one angle of the tomographic acquisition) and how many
projection sets must be acquired for the entire tomographic projection set.  Specifically, assume that we
are reconstructing an object with a circular cross-section having a diameter L.  Our imaging task is to
resolve the object into volume elements (voxels) of width w along the x- and y-axes,  and of thickness b
along the z-axis.  For simplicity, we also assume that we are using a parallel beam geometry in which the
object is scanned in n equal spatial increments along the object.  Therefore, if the width of each spatial
increment is w, then the number of spatial samples n is equal to n = L/w.  In acquiring the tomographic
data, we must satisfy two sampling criteria.

1. According to Shannon’s criterion, if the spatial resolution of the image system has a spatial
resolution that corresponds to a spatial frequency M, then the sampling frequency for that object must be
2M.  In other words, if the spatial resolution width of the imaging system is r, then the sampling interval
must be r/2 (e.,g. the sampling interval must be 5 mm for a system with spatial resolution of 1 cm).
Therefore, we will select the sampling increment w < r/2, so that the number of spatial samples n across
the object of width L is N = L/w.

2.  In addition, we need adequate numbers of samples so that the tomographic reconstruction algorithm
is not underdetermined.  Specifically, if the number of spatial samples across the object of width L is n =
L/w, then the total number of cells N in the circular object is

N = 
area of circular object
 area of individual cell  = 2

2

4w
Lπ = 

4

2nπ (17-17)

To determine πn2 /4 independent values of the attenuation coefficient µ with CT requires at least as
many indpendent measurements.  Therefore, mn = πn2 /4, showing us that the number of angular
samples m is equal to

m = 
4
nπ (17-18)

with m equally-spaced angular samples at angles 0 to π radians around the object.

Discrete Form of Filtered Backprojection

From Equations (17-3) and (17-15), we know that the tomogram can be reconstructed in the
spatial domain by convolving the projection data (pθ(r)) with a convolution kernel (k(r)) having the form

k(r) = 2M2  sinc(2Mr) - M2  sinc2(Mr) (17-19)

where
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p
*
θ(r)  = k(r) ∗ pθ(r) (17-20)

Since modern tomographic reconstruction algorithms are implemented in digital form using a computer
or other data processing system, we will evaluate Eq. (17-19) and Eq. (17-20) in discrete form.  If we
express Eq. (17-20) explicitedly as a convolution in integral form, from Eq. (17-19) we know that

(17-21)

To evaluate the integral in discrete form, we note that the projection data pθ(r) is band-limited with a
maximum spatial frequency M.  Therefore, we must sample the projection data with a sampling
frequency 2M, in which the sampling interval is ∆r = (2M)-1.  Therefore, if we select our data points so
that r and r’ are represented by the discrete variables rn and rm respectively, where

(17-22)

for n,m = 0, ±1, ±2, ..., then we can first evaluate the first half of the integral in discrete form, where

(17-23a)

(17-23b)

since

(17-24)

Similarly,

(17-25a)

(17-25b)

However,

(17-26)

Substituting Eq. (17-26) into Eq. (17-25) yields

(17-27)
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Therefore, from Eqs. (17-21), (17-23), (17-25), and (17-27), we can express the discrete form of the
convolution operation as

(17-28)

(17-29)

Finally, we note that the sampling interval w is

(17-30)

we know that

(17-31)

where the sum is taken over all values of m where (n-m) has an odd value.  We then use Eq. (17-16)
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*
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0
[ k(r) ∗ pθ(r) ] dθ  (17−32)

to reconstruct the image using backprojection, which we also can express in discrete form as

(17-33)

for projection data pθ(r) taken at angular samples of θ = θj, and at an angular increment ∆θ.
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Iterative Reconstruction Algorithms

Concept of Detection Probabilities

The detection probability is used in iterative reconstruction techniques and equals the probability that a
photon emitted from a source in the object is recorded by a detector element in the imaging system.

λb = concentration of a radionuclide at location b
nd = number of counts measured at detector element d
Pdb = probability that a photon emitted from location b is recorded in detector d

Detection probability is calculated from
(a) geometric efficiency of the collimator
(b) attenuation and scatter of photons in the object
(c) detection efficiency of colllimator

Example:  A tumor in the center of the head has accumulated a radiopharmaceutical labeled with
99mTc (140 keV).  Gamma rays emitted by the tumor are detected by a scintillation camera, as shown
below.  A photon emitted by the tumor is recorded by a 3 mm x 3 mm detector element on the
scintillation camera where

(a) the head is circular with a diameter of 20 cm,
(b) the perpendicular distance from the tumor and detector is 15 cm,
(c) the head is water-equivalent with µ = 0.15 cm-1 at 140 keV.
(d) the collimator is 4 cm long with 3 mm x 3 mm square holes aligned with the detector

elements

Please calculate the probability that a photon emitted by the tumor is recorded by a 3 mm x 3 mm
detector element for the following situations:
3 mm x 3 mm 
Page 9 of 19
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(a) the detector element located along the perpendicular between the tumor and the detector surface

(b) the detector element located at 30 degrees from the perpendicular between the tumor and the
detector surface.

Solution:

We will assume that the probability of detecting a photon by the detector element is determined by (a)
the geometric efficiency of the detector and (b) the attenuation of the photon by the tissue in the head,
and that other effects are negligible in comparison.

(a) The geometrical efficiency ηgeom   of detecting a photon from a source 15 cm away from a 3 mm
by 3 mm detector is

ηgeom    = 
Adet

4πR2 = 
2

2

)15(4
)3(

cm
mm

π
= 3.183 x 10-7    

The transmission through the 10 cm thickness of the head (water-equivalent) is

ηtrans    = exp[ ]-µwxw     = exp[ ]-(0.15 cm-1)(10 cm)     = 2.23 x 10-1   

Therefore, the total detection probability for this situation is

ηtotal    = ηgeom    ηtrans    = (3.183 x 10-7   )(2.23 x 10-1   ) = 7.10 x 10-8   

(b) As shown in the diagram (see next page), if the detector element is 30 degrees from the
perpendicular between the tumor and detector surface, then any emiited photons will be absorbed
by the collimator septa and will not reach the detector.  Therefore, the total detection probability
for this situation is

ηtotal    = 0
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Iterative Reconstruction Algorithm

lide imaging device, we measure photons emitted by a radioactive object using an
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method of doing this calculation is by means of an iterative reconstruction algorithm.  As before, we
begin by assuming that we are imaging an object having a radionuclide distribution represented by the
matrix {λb  }, where the index b denotes the location of an individual volume element ("voxel") in the
object.  The purpose of the tomographic reconstruction algorithm is to calculate the radionuclide image
{λb  } from the set of counts {nd  } recorded by the external detector array surrounding the patient,
where the index d identifies each detector element used in making our measurement from the patient.  In
this mathematical derivation, we represent the radionuclide image {λb  } as a "row" vector, but in fact it
generally is represented as a two-dimensional (or even a three-dimensional) matrix in which each matrix
element λb   represents the radionuclide concentration at a point identified by the index b.  Similarly, we
also represent the recorded radionuclide projection data {nd  } as a "row" vector, but in fact it generally
is represented as a two-dimensional (or even a three-dimensional) matrix in which each matrix element
nd   identifies both the angle and the location on the detector, where the data are recorded.

For the sake of argument, let's assume that we completely understand the physics of the medical
imaging system.  In particular, we assume that we know the detection probability Pdb   that a photon
emitted in voxel b is detected in detector d.  The value of the detection probability Pdb   is dictated by
physical phenomena such as the geometric efficiency of the collimator, the attenuation provided by the
material surrounding the radioactive voxel b, and the detection efficiency of the imaging system.  We
then can express the behavior of the imaging system using a matrix equation coupling the radionuclide
concentration {λb  } in the object (i.e., in the set of voxels comprising the object) to the complete set of
detector measurements {nd  }, using the known value of the probability elements Pdb  :











n1
n2
…
nd
…
nD

   = 











P11 P12 … P1b … P1B
P21 P22 … P2b … P2B
… … … … … …

Pd1 Pd2 … Pdb … PdB
… … … … … …

PD1 PD2 … PDb … PDB

 













λ1

λ2
 ... 

λb
 ... 

λB

  (1)

In an ideal world, since we measure the values of {nd  } with our detector array, and since we
presumably know the value of the probability elements Pdb   from the physics of the imaging system, we
could invert the matrix equation (Eq 1) mathematically to solve for the radionuclide distribution (i.e.,
generate the cross-sectional image) λb  .  There are, however, several important factors that keeps us
from taking this direct approach.
(1) The size of the probability matrix (Pdb  } is immense!  A typical nuclear medicine study might

acquire a set of 64 projection images spread over 180°, where each projection image is recorded in a
64 x 64 matrix format.  Thus, the number of measured detector values is (64)3   = 262,144.  Thus,
the matrix {nd  } has 262,144 elements, with each element representing the number of counts
recorded by a point on the detector at one specific angular projection.  Similarly, the radionuclide
distribution is reconstructed, for example, as a set of 32 slices in which each slice is represented as a
64 x 64 matrix.  Thus, the radionuclide concentration {λb  } must be determined at N separate

points, where N = 32(64)2   = 131,072.  Since each detector bin measurement is connected to a
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radionuclide concentration element through the probability matrix P, the probability matrix P has
131,072 columns and 262,144 rows, or over 34 billion matrix elements.

(2) The probability matrix {Pdb  } is very sparse, i.e., most of the matrix elements are zero.  This is
especially true in nuclear medicine where data are acquired with a highly collimated detector such
that only a few detector elements record photons emitted by a given radioactive point in the object.

(3) The detector values {nd  } are noisy (in a statistical sense), and are not known exactly.  In fact, in a
typical nuclear medicine image, each detector element right record a few hundred counts (at most),
so that the percentage statistical uncertainty in the value of each detector value nd   will be in the
range of 5% to 10%.  In mathematical terminology, we say that the probability matrix {Pdb  } is
nearly singular and the matrix equation (Eq. 1) cannot be solved uniquely for the radionuclide
distribution {λb }.

These factors make direct calculation of the probability matrix Pdb   difficult, and make it impossible to
invert the matrix equation (Eq. 1) to solve for the spatial distribution of radionuclide concentration {λb
 }, even if we have carefully measured the number of counts recorded by each detector element {nd  }.

Fortunately, there are several methods to solve for the radionuclide concentration {λb  } for a
given set of detector measurements {nd  }.  One of the most satifying approaches (we will elaborate this
point later) is the "maximum-likelihood expectation-maximization" iterative reconstruction algorithm,
generally abbreviated "ML-EM".  Referring back to matrix Eq. 1, since we do not know the radionuclide
concentration {λb  }, we can assume a solution which we will denote by the matrix {xb  }.  That is, {xb  
} is our best estimate of the true radionuclide distribution {λd  }; we will use successive estimation of
the radionuclide distribution {xb  } to converge toward the actual radionuclide distribution {λd  }.

xx xi-1 i i+1 y j

y j-1

y j+1

Estimated radionuclide distribution Estimated projection distribution calculated 
from estimated radionuclide distribution
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We being the algorithm by assuming that {xb  } is the radionuclide distribution in the object –
that is, that xb   represents the radionuclide concentration at voxel b.  Since we know that the matrix
{Pbd  } represents the probability that photons emitted from voxel (bin) b is detected in detector d, we
can estimate the detector counts {yd  } that would be obtained for the estimated radionuclide distribution
{xd  } using a matrix equation similar to that given in Eq. 1:











y1
y2
…
yd
…
yD

   = 











P11 P12 … P1b … P1B
P21 P22 … P2b … P2B
… … … … … …

Pd1 Pd2 … Pdb … PdB
… … … … … …

PD1 PD2 … PDb … PDB

 











x1
x2
 ... 
xb
 ... 
xB

  (2)

which is equivalent to the summation equation

yd   = ∑
b=1

B
 Pdb xb       (3)

At this point, we have assumed that the object can be represented by the radionuclide distribution {xb  },
for which we would obtain detector counts {yd  }.  However, we also have measured the "true" detector
counts {nd  }.  Since the measured detector counts {nd } are Poisson-distributed, we know that the
probability of observing a value nd  , assuming an underlying Poisson distribution and given an
estimated mean value yd   for any one detector bin is

p(nd  |yd  ) = 
e-yd yd

nd
nd!   (4)

Furthermore, the probability of observing the measured projection data {nd  } for all detector bins, given
the assumed radionuclide distribution {xd  } is

L(n|x) = 
d=1

D
∏ P(yd  |nd  ) = 

d=1

D
∏

e−yd yd
nd

nd !
(5)

where L is called the "likelihood function".  In other words, L(n|x) represents the probabilistic likelihood
that the measured data {nd  }is statistically equivalent to the estimated detector data {yd  }.  In the ML-
EM algorithm we wish to maximize the likelihood function L, to obtain the estimated detector data {yd  
} that best fits the measured detector data {nd  }.  Moreover, we do this in a way that provides us with
the "maximum-likelihood" estimate {xb  } of the true radionuclide distribution {λb  }.  Since the
maximization of the likelihood function L is tedious mathematically, we calculate the log-likelihood
function Λ = ln(L) such that from Eq. 3 and 5,

Λ = ∑
d=1

D
 [ ]-yd + nd lnyd - ln( )nd!    = 

d=1

D
∑ − Pdbxb

b=1

B
∑ + nd ln Pdb xb

b=1

B
∑

 

 
 
 

 

 
 
 

− ln nd![ ]
 
 
 

  

 
 
 

  (6)

The natural logarithm is monotonically increasing.  Therefore, we can maximize the likelihood function
L by maximizing the log-likelihood function Λ
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kx∂
Λ∂ = 

d=1

D
∑ −

∂yd
∂xk

+
nd
yd

∂yd
∂xk

 

 
 

 

 
 = 0 (7)

From Eq. 3, we know that

k

d
x
y

∂
∂

= 











∂∂

∂ ∑
=

B

b
bdb

k
xP

x 1
= Pdk  (8)

Substituting Eq. 8 into Eq. 7 gives us

∑
d=1

D
 






-Pdk + 

n(d)
yd

Pdk    = 0 (9)

into which we can substitute Eq. 3 to obtain

Pdk =
nd

Pdb xb
b=1

B
∑

Pdk

 

 

 
 
 
 
 

 

 

 
 
 
 
 

d=1

D
∑

d=1

D
∑ (10)

which provides 

1

d=1

D
∑ Pdk d=1

D
∑

nd

Pdb xb
b=1

B
∑

Pdk

 

 

 
 
 
 
 

 

 

 
 
 
 
 

= 1 (11)

thus satisfying the condition for maximizing the log-likelihood function (and thereby maximizes the
likelihood function Eq. 5).

Our goal is to find the best estimate of the radionuclide distribution {xb  } which satisfies the
condition specified by Eq. 11.  A common way of doing this is using an iterative technique known as the
maximum-likelihood expectation-maximization algorithm in which we assume a radionuclide

distribution {x
(n)
b   } that is our best estimate of the true radionuclide distribution {λb  }, where the

superscript "(n)" denotes the nth   iterative estimate of the radionuclide distribution

x
(n+1)
k    = xk

(n) 1

d=1

D
∑ Pdk

d =1

D
∑

nd

Pdb xb
(n)

b=1

B
∑

Pdk

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 
 
 

 

 
 

 

 
 
 

 

 
 

(12)

We start with the estimate {x
(0)
k   } (i.e., iteration n = 0) and use Eq. 12 to obtain an improved estimate

{x
(1)
k   }.  We then use {x

(1)
k   } to obtain {x

(2)
k   } which represents an improved estimate of the

radionuclide distribution {λk  }, and so on.  We continue this iterative process until our estimate {x
(n+1)
k   

} satisfies some convergence criterion, at which point we stop the calculation and use {x
(n+1)
k   } to
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represent the true (but unknown) radionuclide distribution {λk  }.  We can, for example, decide to stop
the iterative calculation when the calculated value of the likelihood-function (Eq. 5) reaches some
predetermined value.  Another possible stopping condition would be imposed, for example, if the mean-
squared difference between the pixel values from one iteration were sufficiently close to those obtained
from the next iterative estimate, i.e., when

S = ∑
b=1

B
 (x

(n)
b+1 - x

(n)
b )2  (13)

is smaller than some predetermined level.  The most common stopping condition invokes the practical
criterion that the calculation (Eq. 12) is performed for a preset number (e.g., 20 to 30) of iterations, at

which point the estimated radionuclide distribution {x
(n)
b   } represents our true radionuclide distribution

{λb  }.  This latter stopping condition, and our choice of the "optimal" number of iterations, can be
based on how many iterations gave reasonable estimates of the radionuclide distribution in previous
reconstructions of the same or similar objects.

The maximum-likelihood expectation-maximization (ML-EM) algorithm (Eq. 12) has several
important properties that we will state without proof.  First, the ML-EM algorithm converges to the
maximum-likelihood solution, and it converges monotonically.  Second, the ML-EM algorithm

automatically imposes a nonnegativity constraint; the estimated values x
(n)
b    never assume negative

values, which corresponds to our observation that the radionuclide concentration λb   cannot be negative.

Third, the estimated detector measurement {y
(n)
d   } give a maximum-likelihood solution that

approximate the true detector measurement {nd  } in a Poisson-statistical sense.  Finally, the ML-EM
algorithm preserves counts; the total number of counts in the estimated detector measurement equals the
total number of counts in the actual detector measurement

∑
d=1

D
   x

(n)
d    = ∑

d-1

D
   nd  (14)

All of these properties are ones that agree with physically observed properties of realistic radionuclide
distributions and detector measurements, and thereby make the ML-EM solution one that is satisfying
conceptually.

Note that the ML-EM algorithm (Eq. 12) contains the elements of our generic iterative algorithm
including a projector, a comparator, and a corrector.  That is, the sum

y
(0)
d    = ∑

b=1

B
   Pdb  x

(0)
b   (15)

in the denominator of Eq. 12 also represents the backprojection of the estimated radionuclide

distribution {x
(0)
b   }, while the expression

nd

∑
b=1

B
 Pdbx

(0)
b

  (16)

compares the estimated projection (Eq. 15) with the measured projection value nd  .  Next, the term
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∑

d=1
D  







nd

∑
b=1

B

Pdbx
(n)
b

 Pdk   (17)

backprojects the correction factors obtained in Eq. 16, which then are used to update the previous

iteration {x
(n)
k   } to obtain the next estimate {x

(n+1)
k   } of the radionuclide distribution

x
(n+1)
k    = xk

(n) 1

d=1

D
∑ Pdk

d =1

D
∑

nd

Pdb xb
(n)

b=1

B
∑

Pdk

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 
 
 

 

 
 

 

 
 
 

 

 
 

(18)

Finally, the demoninator in Eq. 12

∑
d=1

D
   Pdk  (19)

is the "sensitivity term" and represents the probability that a photon emitted from radioactive voxel k,
will be detected in one of the detector elements (d=1 to D).

Example:  Let's assume that a simple object can be represented by a
2x2 matrix {λj  } from which we obtain six projection measurements
{ni  } (figure at right).  Furthermore, we know that each detector
measurement is obtained as the sum of counts along the ray
intersecting two pixels, where the probability of detection from each
voxel lying along the ray is

Pij   = 


 0.1 if voxel j lines along the ray intersecting detector i
  0 if voxel j does not lie along the ray intersecting detector i
(20)

If we apply this model to the following radionuclide distribution that is
represented spatially as

{λi  } = 








λ1 λ2

λ3 λ4
   = 







97 50

66 99
  (21)

97 50

66 99

12

15

17

201517

Image

Projection Data
Pr

oj
ec

tio
n 

D
at

a

the imaging process can be represented in matrix form as











n1

n2
n3
n4
n5
n6

   = 













P11 P12 P13 P14

P21 P22 P23 P24
P31 P32 P33 P34
P41 P42 P43 P44
P51 P52 P53 P54
P61 P62 P63 P64

 









λ1

λ2

λ3

λ4

  (22)
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For our specific example, we obtain the projection data











12

15
17
20
15
17

   = 











0 0.1 0.1 0

0.1 0.1 0 0
0 0 0.1 0.1

0.1 0 0 0.1
0 0.1 0 0.1

0.1 0 0.1 0

 







97

50
66
99

  (23)

Now, let's take the case where we only know the projection data from Eq. 23.  We will use these data to
perform the first iteration of the ML-EM algorithm.  We start with the zeroth iteration by estimating the
radionuclide distribution in the object as being uniform and equal to one

{x
(0)
i   } = 







1

1
1
1

  (24)

We calculate the first iteration using Eq. 12 for the estimated radionuclide distribution k=1:

x
(1)
1    = x













































∑
∑

∑
=

=

=

1
)0(

1

1
1

1

)0(
1

1
d

bdb
B

b

d
D

d
d

D

d

P
xP

n

P
(25)

Note that

 








y
(0)
d    = 









∑
b=1

B
 Pdbx

(0)
b    = 











0 0.1 0.1 0

0.1 0.1 0 0
0 0 0.1 0.1

0.1 0 0 0.1
0 0.1 0 0.1

0.1 0 0.1 0

 







1

1
1
1

   = 











0.2

0.2
0.2
0.2
0.2
0.2

  (26)









nd

∑
b=1

B
 Pdbx

(0)
b

   = 

















12
0.2

15
0.2

17
0.2

20
0.2

15
0.2

17
0.2

  (16)
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so that from Eq. 25,





















∑
∑

=

=
dkB

b

n
bdb

d
D

d
P

xP

n

1

)(1
=  











0 0.1 0.1 0

0.1 0.1 0 0
0 0 0.1 0.1

0.1 0 0 0.1
0 0.1 0 0.1

0.1 0 0.1 0

  (27)

Similarly, we can calculate the other elements of the estimated radionuclide distribution {x
(1)
i   }, which

we can show is equal to





x

(1)
1 x

(1)
2

x
(1)
3 x

(1)
4

   = 






86.67 70

76.67 86.67
  (28)

which is our first-estimate of the radionuclide distribution given exactly in Eq. 21.
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