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Introduction: 

High-resolution, robust, and fast estimation of correlated electromagnetic brain activities has 
long been a challenge in the field of magnetoencephalography (MEG). One class of suitable 
methods, minimum variance beamformers1, use spatial filters that pass source signals in 
particular locations while suppressing noise and interference. However, reconstruction quality 
deteriorates depending on the degree of source correlation, limiting functional connectivity 
analysis. Several algorithms have been shown to improve robustness to correlation but are of 
limited practical value due to the need for a prior information1, limitation to scalar sources2, or 
excessive computational time3. Sparse Bayesian methods, shown to be excellent in learning 
sparse models from over-complete feature sets, can improve robustness to source correlation 
without these limitations. We propose a new multi-resolution method explicitly incorporating 
robust data covariance estimation by sparse Bayesian learning (SBL) followed by adaptive 
beamforming, referred to as SBL Beamformer. 
 
Methods: 
 
Our novel algorithm improves correlated source reconstruction by estimating the data 
covariance at low resolution using sparse Bayesian learning followed by parallelized minimum 
variance beamformer reconstruction at high-resolution. The algorithm was tested against 
several representative benchmarks (Champagne4, MxNE5, sLORETA6, and the minimum variance 
beamformer7) using challenging simulated source configurations and time courses. SBL 
Beamformer was implemented using the NUTMEG library in the MATLAB environment. 
 
Results: 
 
Our results demonstrate that SBL Beamformer is robust at handling multiple correlated sources 
while suppressing the effect of interference and noise. In simulations, SBL Beamformer 
demonstrates improved runtime efficiency and increased reliability of localization, while 
maintaining performance in correlated environments. In a representative example MEG 
simulation (figure) with five point sources (with inter-source correlation of 0.9 at 10 dB), SBL 
Beamformer demonstrated improved localization accuracy and power estimation compared to 
the four benchmark algorithms. Computation time for Champagne, MxNE, sLORETA, 
Beamformer, and SBL Beamformer was 879.4 s, 758.3s, 24.7s, 160.7s and 61.3s. 



 
 
Conclusions: 
 
Improving robustness to correlated source activity is expected to significantly improve 
functional connectivity analysis in MEG. Many previous modifications of the minimum variance 
beamformer have shown limited utility in this regard1,2,3. The SBL Beamformer addresses the 
issue of source correlation by employing sparse Bayesian learning at low resolution to robustly 
estimate the data covariance prior to high-resolution beamformer reconstruction. This multi-
resolution procedure results in a reconstruction method that is both efficient in terms of 
computational time and robust to correlation. We expect that MEG functional connectivity 
analysis will be improved across a wide variety of studies by utilizing the SBL Beamformer 
rather than the conventional minimum variance adaptive beamformer, Champagne, sLORETA, 
or MxNE. 
 
Highlights: 
 
High-resolution beamforming with robust low-resolution data covariance estimation using 
sparse Bayesian learning is able to efficiently reconstruct correlated neuronal activity in 
magnetoencephalography measurements. This novel method, termed SBL Beamformer, 
showed improved performance compared to several commonly used reconstruction 
algorithms. 
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