Amino Acid-Derived Sensors For Specific Zn²⁺ Detection Using Hyperpolarized ¹³C Magnetic Resonance Spectroscopy Sinan Wang, David E. Korenchan, Paola M. Perez, Céline Taglang, Thomas R. Hayes, Renuka Sriram, Robert Bok, Andrew S. Hong, Yunkou Wu, Henry Li, Zhen Wang, John Kurhanewicz, David M. Wilson, Robert R. Flavell Alterations in Zn²⁺ homeostasis have been targeted for diagnosis and treatment of human diseases including cancer, diabetes, and neurodegenerative illness. Enabled by hyperpolarization techniques, hyperpolarized (HP) probes for *in vivo* detection of a variety of analytes using HP ¹³C MRS have been developed. Here, we explored the use of HP ¹³C MRS for Zn²⁺-specific imaging. We began our study by screening a variety of candidate Zn²⁺ ligands for their chemical shift response upon Zn²⁺ binding. Among the 34 tested compounds, cysteine and iminodiacetic acid were selected for further evaluation because of their large chemical shift response to Zn²⁺ binding (+4.6 and +7.3 ppm in the presence of equimolar Zn²⁺, respectively), excellent water solubility, low molecular weight, predicting a long ¹³C T₁, and convenience for ¹³C labeling. Both probes showed excellent specificity for Zn²⁺ over other main physiologic cations Na⁺, K⁺, Ca²⁺ and Mg²⁺. A quantitative method for determining Zn²⁺ concentration was developed using NMR. A titration curve was plotted to show the chemical shift difference between [1-¹³C]Cys and internal standard urea as a function of the Zn²⁺ to [1-¹³C]Cys ratio. The peak moved linearly with increasing Zn²⁺ up to 0.25 equivalents of Zn²⁺ to [1-¹³C]Cys. The rate of chemical shift change decreased at higher Zn²⁺ concentrations. Next, we developed and optimized a hyperpolarization method for 13 C labeled [1- 13 C]Cys. For [1- 13 C]Cys, the optimized preparation was obtained by a mixture of 1.0 eq of [1- 13 C]Cys, 0.5 eq of 4N HCl and 2.65 eq of glycerol, with 20 mM OX063 radical. Using this method, 13.4 \pm 0.6% back-calculated polarization was obtained with a polarization time constant of 1227 \pm 30 (n = 3). The T₁ relaxation time was 36.0 \pm 1.8 seconds at a magnetic field of 3T. The ability of the probes to image Zn²⁺ concentration was tested using phantoms on a 3T MRI system. By using the best-fit linear model of chemical shift as a function of Zn²⁺ concentration, hyperpolarized [1- 13 C]Cys was able to accurately determine the concentration over the physiologically relevant range of 0.2 – 20 mM Zn²⁺. Finally, we verified that HP [1- 13 C]Cys could accurately determine Zn²⁺ concentration in biological samples by comparing imaging results against a commercially available fluorescence based Zn²⁺ quantification kit. Taken together, these data demonstrate that [1-¹³C]Cys represent promising probes for imaging Zn²⁺ using hyperpolarized ¹³C MRI. The probes demonstrate large changes in signal and chemical shift in response to Zn²⁺, favorable T₁ and polarization parameters, and can be imaged in phantom experiments. [1-¹³C]Cys accurately quantified Zn²⁺ concentration in biological samples at physiologically relevant concentrations. For this reason, [1-¹³C]Cys is a particularly promising probe for future *in vivo* hyperpolarized magnetic resonance imaging of pathologies with alterations in Zn²⁺ homeostasis such as prostate cancer, neurodegenerative disease, and diabetes.