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Highlights:
e |IDHmut inhibition induces a drop in 2-HG, and an increase in glutamate and
phosphocholine in glioma cell models
e The flux from extracellular glutamine to intracellular glutamate increases following
IDHmut inhibition
e This unique MRS-detectable metabolic profile can potentially be exploited for early non-
invasive, clinically translatable detection of response to IDHmut inhibitors

Gliomas are the most common type of brain tumor in adults, representing 80% of all primary
malignant central nervous system tumors. Mutations in the cytosolic enzyme isocitrate
dehydrogenase 1/2 (IDHmut) are reported in 70-90% of low-grade gliomas and secondary
glioblastomas. The wild-type isocitrate dehydrogenase (IDHwt) enzyme is important for cellular
respiration and converts isocitrate to a-ketoglutarate (o-KG). Mutations most commonly occur
at the R132 residue in the active site of IDHwt and lead to the neomorphic reduction of a-KG to
2-hydroxyglutarate (2-HG). 2-HG is an oncometabolite that ultimately drives tumorigenesis.
Inhibition of IDHmut is therefore an attractive therapeutic approach and targeted inhibitors of
IDH1 (AG-120) and pan-IDH1/2 (AG-881) have shown promising results in phase 1 and 2 clinical
studies for gliomas. There is an urgent need to identify non-invasive methods of imaging
response to AG-120 and AG-881. Prior work from our laboratory has also revealed the role of 2-
HG in inducing magnetic resonance spectroscopy (MRS)-detectable metabolic reprogramming in
IDHmut glioma cells. Therefore, the goal of this study was to examine the utility of MRS to non-
invasively image response to IDHmut inhibition in low-grade gliomas. To this end, we used *H and
13C-MRS to investigate the response of two genetically-engineered IDHmut cell lines (U87-based
and normal human astrocyte (NHA)-based) to AG-120 and AG-881 treatment. As expected, in
both cell lines, our *H-MRS data indicated that AG-120 and AG-881 induced a significant decrease
in 2-HG. Interestingly, consistent with previous data linking 2-HG to reduced glutamate and
phosphocholine levels, we observed a significant increase in phosphocholine and glutamate
following treatment with AG-120 and AG-881. These results point to a unique MRS-detectable
signature of IDHmut inhibition. To further investigate the mechanism behind the increase in
glutamate levels induced by IDHmut inhibition in our models, we used 3C-MRS to examine the
flux from [1-33C] glucose or [3-13C] glutamine to '3C-labeled glutamate. In the NHA model, we
observed significant increase in the flux of [3-13C] glutamine to 3C-glutamate following IDHmut
inhibition. In contrast, the flux of [1-13C] glucose to *3C-glutamate remained unchanged. In the
U87 cell model, we also saw a significant increase in the flux of [3-13C] glutamine to glutamate
following treatment. However, we also saw a slight increase in the flux of [1-13C] glucose to
glutamate in this model. Since the increase in glutamine-derived glutamate is common to both
models, it is likely to be a robust biomarker of response to therapy. Based on these results, we
plan to explore the utility of monitoring the flux of hyperpolarized [1-13C] glutamine or



hyperpolarized [1-13C] a-KG to 2-HG as a means of measuring response to IDHmut inhibition. We
also plan to examine whether the flux of hyperpolarized [1-3C] glutamate to hyperpolarized [1-
13C] a-KG or the flux of hyperpolarized [2-13C] pyruvate to hyperpolarized [5-13C] glutamate can
probe response to IDHmut therapy. Taken together, our studies indicate that IDHmut inhibition
induces a uniqgue MRS-detectable metabolic profile that can potentially be exploited for early
non-invasive, clinically translatable detection of response to emerging IDHmut inhibitors.
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Figure 1. IDHmut inhibition induces a unique MRS-detectable metabolic profile. (A) Schematic pathway
illustrating role of IDHwt and IDHmut, as well as 13C-labeling of glutamate derived from [1-13C] glucose
and [3-13C] glutamine. (B) Quantification of metabolite levels in NHAmut cell extracts following
treatment, quantified using *H-NMR. (C) Representative 1*C-NMR spectra of [1-13C] glucose-labeled cell
extracts. (D) Representative 13C-NMR spectra of [3-13C] glutamine-labeled cell extracts. (E)
Quantification of glutamate produced from [1-13C] glucose and [3-13C] glutamine and total glutamate
levels in NHAmut cell extracts.



