Development of Computational Methods for B₁-Corrected Hyperpolarized ¹³C MRI Human Studies

Philip Lee^{1,2}, Hsin-Yu Chen², Jeremy W Gordon², Peder EZ Larson^{1,2}, Mark Van Criekinge², Michael A Ohliger², Duan Xu^{1,2}, John Kurhanewicz^{1,2}, Robert A Bok², Rahul Aggarwal³, Pamela N Munster³, Daniel B Vigneron^{1,2}

¹UCB/UCSF Bioengineering Graduate Group, San Francisco, CA; ²UCSF Department of Radiology & Biomedical Imaging, San Francisco, CA; ³UCSF Department of Medicine, San Francisco, CA

Highlights:

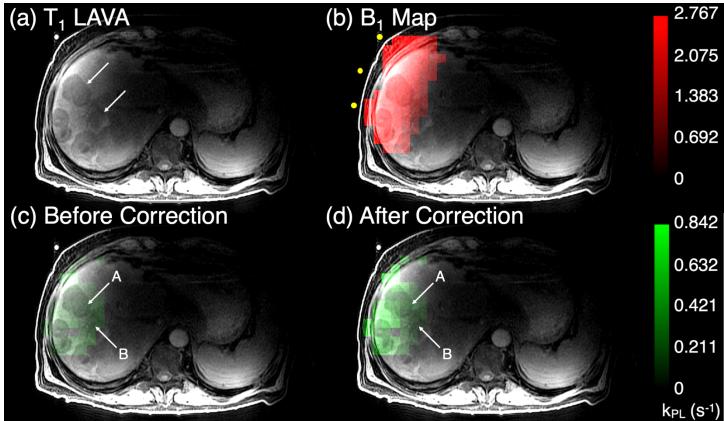
Voxel-wise transmit B₁ field correction for hyperpolarized ¹³C MRSI scans was developed and applied, yielding a more accurate quantification of pyruvate to lactate conversion rates (k_{PL}). The corrected k_{PL} estimations agree with simulations where over-flip leads to an underestimation of k_{PL} , whereas under-flip leads to overestimation.

Background and Motivation:

Hyperpolarized (HP) ¹³C MR spectroscopic imaging (MRSI) enables quantitative monitoring of enzyme-catalyzed metabolism in human subjects. Using HP [1-¹³C]pyruvate, the rate of conversion of pyruvate to lactate (k_{PL}) via lactate dehydrogenase (LDH) can be computed per voxel in patients with progressing liver metastases. However, ¹³C surface transmit/receive (T/R) coils do not have a homogeneous B₁ excitation profile, resulting in a gradient of decreasing flip angles for voxels increasingly farther away from the coil. In calculating the k_{PL} for each voxel, the nominal flip angle can be corrected based off the coil's B₁ excitation profile. The goal of this project was to develop and test a novel computational framework to improve k_{PL} accuracy using B₁⁺ correction in human studies.

Methods and Results:

Data from three patients are presented in **Table 1** with a representative case shown in **Figure 1**. The patients had liver metastases from varied cancer origins as listed in **Table 1**. For each scan, we acquired an axial T₁-weighted spoiled gradient-echo (LAVA) anatomical reference, as shown in **Figures 1(a)**, with the target lesion highlighted. In each scan, the ¹³C T/R coil was placed on the patient's abdomen on the side closest to the target lesion to ensure coverage by the coil's T/R field. ¹³C-pyruvate and ¹³C-lactate signals were acquired with a 2D echoplanar spectroscopic imaging (EPSI) sequence over 1 minute with a temporal resolution of 3 seconds and a spatial resolution of 1.2 cm isotropic voxels.


In MATLAB, the spectral data were zero- and first- order phase corrected. Then, each metabolite was quantified as area under its spectral peak. An SNR filter with an empirically-determined threshold was applied to remove noise voxels. Similarly, voxels outside of the coil's sensitive region were excluded. The excitation profile of the ¹³C T/R coil was previously measured from a phantom scan. In MATLAB, the previously measured excitation profile was aligned to the ¹³C image based on fiducial locations (indicated with yellow dots) during the patient scan and shown in **Figures 1(b)**. The adjacent color bar indicates the scaling factor relative to the nominal flip angle for each voxel. The nominal flip angles for pyruvate and lactate of 10° and 20°, respectively, were scaled for individual voxels to reflect the excitation profile. The k_{PL} maps were computed using an inputless two-site model [1]. The k_{PL} maps before and after the flip angle correction are shown in **Figures 1(c)** and **1(d)**, respectively. The k_{PL} values for selected voxels are also summarized in **Table 1** along with the percent difference.

Discussion:

The figure-8 coil provided adequate transmit power over the metastases despite B_1 inhomogeneity. In this study, over-flip led to an underestimation of k_{PL} (e.g. a -43.46% underestimation in Scan #2) whereas an under-flip led to overestimation (e.g. a +54.90% overestimation in Scan #2), which agree with simulations [1]. The B_1 correction methods developed in this study can improve quantitative accuracy of metabolism in human cancer. In future studies, we plan to utilize a fast B_1 -mapping scheme for patient HP ¹³C-pyruvate MRI [2].

References:

- [1] Larson et al. NMR Biomed 2018.
- [2] Tang et al. MRM 2019
- [3] Ohliger et al. ISMRM 2016 Abstract.
- 4]. Sun et al. MRM 2018.

Figure 1. Scan #2 is shown in this figure. *(a)* An axial T1-weighted LAVA image with the target cancer lesions highlighted. *(b)* The excitation profile of the ¹³C T/R coil. *(c)* k_{PL} values before the flip angle correction. *(d)* k_{PL} values after the flip angle correction. Over-flipped tumor voxel A had an initial k_{PL} estimation of 0.055 s⁻¹ but was corrected to 0.097 s⁻¹. Under-flipped tumor voxel B had an initial k_{PL} estimation of 0.099 s⁻¹ but was corrected to 0.064 s⁻¹.

Scan #	Cancer Origin	Flip Correction Scaling	k _{PL} Before Correction (s ⁻¹)	k _{PL} After Correction (s ⁻¹)	% Difference
1	Neuroendocrine	1.00	0.054	0.054	0.00
		1.47	0.043	0.081	-46.10
		1.90	0.032	0.090	-65.06
2	Cholangiocarcinoma	1.47	0.055	0.097	-43.46
		0.70	0.099	0.064	+54.90
		1.57	0.063	0.126	-50.25
3	Cholangiocarcinoma	1.70	0.026	0.059	-56.94
		1.07	0.027	0.029	-8.50
		1.10	0.030	0.034	-12.82

Table 1. Selected voxels with their specific flip correction scaling factors and their estimated k_{PL} values before and after the correction. A voxel with a scaling factor above 1.00 was over-flipped, that is, it experienced a flip greater than the nominal flip angle. Hence, its flip angle needed to be scaled higher. Voxels that are highlighted in the above figure are italicized.