Hyperpolarization - Description, Overview & Method

Educational Session, ISMRM 2017

Peder Larson, Ph.D.
Associate Professor, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States

peder.larson@ucsf.edu
https://radiology.ucsf.edu/research/labs/larson
@pezlarson

April 26, 2017
Declaration of Financial Interests or Relationships

Speaker Name: Peder Larson

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: GE Healthcare
Type of Relationship: Research Support
Outline

https://radiology.ucsf.edu/research/labs/larson/educational-materials

(Google: Peder Larson Lab, Educational Materials link on sidebar)

- Hyperpolarization
 - What does it mean?
 - Dissolution Dynamic Nuclear Polarization (dDNP)
 - Spin Exchange Optical pumping
 - Para-hydrogen induced polarization (PHIP, SABRE)

- Imaging Methods
 - RF pulse strategies
 - Acquisition strategies
 - Analysis – kinetic models
Spin Polarization

\[B = 0 \]

\[M_0 = 0 \]

Spins

Net Magnetization
Hyperpolarization Methods

Spin Polarization in a Magnetic Field

Spin polarization in a magnetic field

Polarization fraction:
\[\tanh\left(\frac{-h\gamma B_0}{2\pi kT}\right) \]

0.0001-0.0005% at room temperature, depending on nucleus (\(\gamma\)) and field (B0)

Net Magnetization

\(M_0 \neq 0\)
Hyperpolarization

- Perturb spins from thermal equilibrium to increase fraction aligned parallel (or anti-parallel) to \(B_0 \)
- Polarizations of > 50%!!
- Methods:
 - Optical pumping (for gasses, ie \(^3\)He, \(^{129}\)Xe)
 - Parahydrogen-induced Polarization (PHIP)
 - Dynamic Nuclear Polarization (DNP)
Spin Exchange Optical Pumping

- Polarization of noble gases (e.g. 3He, 129Xe)
- Mixtures of alkali-metal vapors and noble gases irradiated with circularly polarized resonant light
- Major application is pulmonary imaging for lung disease

Hyperpolarized 129Xe MRI
Para-hydrogen Induced Polarization (PHIP)

- Parahydrogen is the Singlet State of Hydrogen gas, H₂

- MR invisible, can store magnetization

- Transfer the polarization from the singlet-state to other nuclei

Singlet, S_0

$\frac{1}{\sqrt{2}} (|T\uparrow\downarrow - T\downarrow\uparrow\rangle)$

Triplet, T_{+}, T_{0}, T_{-}

- T_{+}: $|T\uparrow\uparrow\rangle$
- T_{0}: $\frac{1}{\sqrt{2}} (|T\uparrow\downarrow + T\downarrow\uparrow\rangle)$
- T_{-}: $|T\downarrow\downarrow\rangle$

Para hydrogen

Hyperpolarized substrate

SABRE
Adams, …, Duckett et al.
Science 2009 323, 1708

Para hydrogen

Reversible exchange
Signal Amplification By Reversible Exchange (SABRE)

- At the appropriate magnetic field (e.g. 6.5 mT for hyperpolarization of protons), J-coupling interactions across the iridium catalyst drive hyperpolarization from parahydrogen to substrate.
- Reversible exchange of both, parahydrogen and substrate, leads to continuous hyperpolarization buildup.
- Heteronuclear SABRE greatly generalizes the substrate scope and enables long hyperpolarization lifetimes.

Theis et al. *JACS* 2015 137 (4), 1404
SABRE Discussion
Primarily limited to molecules containing sp or sp\(^2\) hybridized nitrogens

- **Pros**
 - Relatively Simple and Fast
 - Uses inexpensive equipment
 - Long-Lived States can be hyperpolarized directly

- **Cons**
 - Limitations on polarizable substrates
 - Reduced efficiency in water
 - Removal of the toxic hyperpolarization catalyst

Substrates:
Primarily limited to molecules containing sp or sp\(^2\) hybridized nitrogens

Colell et al. *JPCC* **2017** 121(12), 6626
Dynamic Nuclear Polarization (DNP)

- Microwaves at appropriate frequency transfer polarization from electrons to nuclei
- High magnetic field increases polarization of both nuclear and electron spins
- Very low temperature also used to increase polarization of both nuclear and electron spins

Sample: Amorphous solid material doped with unpaired electrons at a ratio ~ 1 free electron:1000 13C

For $B_0 = 3.35$ T

At 1.2K,

$P_e = 94\%$ & $P_C = 0.086\%$
3.35 T and ~1.2°K
\(\gamma_{\text{electron}} B_0 = 94 \text{ GHz} \)
\(\gamma_{\text{C-13}} B_0 = 35 \text{ MHz} \)
Dissolution DNP Procedure

- The buffer is heated and pressurized
- The sample space is pressurized
- The sample is raised out of the liquid helium
- The dissolution stick is lowered, docking with the sample holder
- The solvent is injected, dissolving the sample, while preserving the enhanced polarization
SpinLab Clinical Polarizer

SpinLab Polarizer

5 T and ~0.8°K
γ_{electron} B_0 = 140 GHz
γ_{C-13} B_0 = 52 MHz

Automated Quality Control System

Ardenkjaer-Larsen et al. NMR Biomed 2011; 24:927
Dissolution DNP 13C Agents

Requirements

- Long T_1 relaxation time (polarization half-life)
- Water-soluble is best
- Mixture with free electron source, aka electron paramagnetic agent (EPA), free radical
- Low Toxicity
- In vivo interest

Agents

- $[1^{-13}C]$-pyruvate: metabolism, Warburg effect
- 13C-urea: inert, perfusion
- bis-$1,1$-(hydroxymethyl)[1^{-13}C]cyclopropane-d_8 (HMCP, HP001): long T_1 perfusion agent
- $[1,4^{-13}C_2]$-fumarate: necrosis
- 13C-bicarbonate: pH measurement
- $[2^{-13}C]$-fructose: metabolism
- $[5^{-13}C]$-glutamine: metabolism, cell proliferation
- 13C-dehydroascorbate (DHA): Reduction/oxidation potential
- $[1^{-13}C]$-α-ketoglutarate: IDH mutation status
- $[U^{-2}H, U^{-13}C]$-glucose: metabolism
- and more

Hyperpolarized Carbon-13 Pyruvate

13C-Pyruvate

- Most promising HP agent thus far
- Long T_1 (\approx 40-60 s)
- Readily polarizable
- Endogenous
- Rapid uptake and conversion to lactate, alanine, and bicarbonate
- Directly probes the “Warburg Effect” in cancer
- (Safety and feasibility established in prostate cancer patients)
Net magnetization behavior, hyperpolarized or at thermal equilibrium, is described by Bloch equation:

\[
\frac{d}{dt} \vec{M} = \vec{M} \times \gamma \vec{B} + \begin{bmatrix}
-1/T_2 & 0 & 0 \\
0 & -1/T_2 & 0 \\
0 & 0 & -1/T_1 \\
\end{bmatrix} \vec{M} + \begin{bmatrix}
0 \\
0 \\
M_0/T_1 \\
\end{bmatrix}
\]
Relaxation to Equilibrium

T_1 decay of M_z (~50 s in vivo for [1-13C]pyruvate)
Relaxation to Equilibrium

T_2 decay of M_{xy}
(~100ms-2s in vivo for pyruvate)
13C MR of Pyruvate Metabolism

Following injection of 13C-pyruvate, the dynamic MR spectrum shows the metabolic flux from pyruvate to lactate, alanine, bicarbonate, and pyruvate-hydrate.

- Pyruvate
- Lactate
- Alanine
- Bicarbonate

Dynamic MR Spectrum *in vivo*
Hyperpolarized 13C Imaging Procedure

1. Hyperpolarization of 13C-pyruvate (45-90 mins)
2. Rapid dissolution of frozen compound to create a hyperpolarized liquid agent (10 sec)
3. Agent is injected to the subject inside the MRI scanner (10 sec)
4. 13C MRI/MRSI is performed immediately (1-2 mins)
MR Pulse Sequence Components

1. Excite spins (RF)
2. Readout signal (spectral and/or spatial encoding)
3. Repeat
Hyperpolarized RF Pulses

Two key considerations:

1. Efficient use of hyperpolarization
 - Variable flip angles
 - “Multiband” excitation

2. Spectral selectivity
 - Spectral-spatial RF pulses
Constant Flip Angle

- Received signal varies between excitations (can cause blurring)
- Residual unused hyperpolarization after last excitation
Variable/Progressive Flip Angle

- Flip angle is strictly increasing
- Received signal constant when accounting for lost magnetization (Si = C)
- Efficient usage of all polarization

\[
\begin{align*}
\theta_1 = 45^\circ \\
\theta_5 = 90^\circ \\
\theta_2 = 45^\circ \\
\theta_3 = 90^\circ \\
\theta_4 = 45^\circ \\
\theta_6 = 90^\circ \\
\end{align*}
\]

\[
\tan \theta_n = \frac{1}{\sqrt{N - n}}
\]
Dynamic Imaging: Conventional Excitation

Flip angle

20°
10°
5°
2.5°

Received signal

Time

Excess Pyruvate SNR

Pyruvate
Lactate

Hyperpolarization Methods
Dynamic Imaging: Multiband Excitation

More lactate SNR for more time

Pyruvate SNR is still sufficient

Smaller pyruvate flip leaves more magnetization that can then become lactate

Pyruvate

Lactate
Combination of

- Variable flip angle across acquisitions for improved SNR
- Multiband pulse designs to account for metabolic conversion between acquisitions
Spectral Selectivity

Use spectrally selective RF pulses to control flip angles for different compounds.
Spectral Excitation Profile

- Design RF pulses for desired spectral profile
- Fourier Transform relationship between RF pulse shape and Magnetization profile: Valid for small tip angles, < 30° (pretty close up to 60°)
- Non-linear relationship for large tip angles: Use Shinnar-Le Roux transform or other tools for RF pulse design
Spectral-Spatial RF Pulses

- Add oscillating gradient for additional spatial selectivity
- Additional constraints on spectral and spatial selectivity
- Useful in vivo where spatial selectivity is important
Spectral-Spatial RF Pulse Design

Features:
- Simultaneous selectivity in frequency and position
- Customizable for different nuclei and MR hardware
- Multi-band specification
- Aliased bands are allowed
- Power minimization
- Time minimization
- Correction for non-uniform sampling
- VERSE for ramp sampling and peak B1 reduction

MATLAB code available at:
https://github.com/agentmess/Spectral-Spatial-RF-Pulse-Design
Hyperpolarized Acquisitions: Need for Speed

- Rapid signal decay
- Rapid metabolic conversion
- Single image SNR decreases with more excitations due to T1 decay
- Fast data acquisition is important for HP agents

Simulated Single-Image SNR with T1 decay and progressive flip angle
Readout Strategies

Can be approximately grouped into three categories (from slowest to fastest)

1. MR spectroscopic imaging (MRSI)
2. Model-based Spectral decomposition with multiple TEs (Dixon/IDEAL)
3. MRI with spectrally-selective excitation (“Metabolite-specific Imaging”)
Fast MR Spectroscopic Imaging

- **Methods**
 - Echo-planar spectroscopic imaging (EPSI)
 - Spiral spectroscopic imaging
 - Concentric Rings
 - Radial EPSI
 - Rosettes
 - And More

Simultaneous acquisition of spectral and spatial k-space data in (k_x, k_y, k_z, t) or (k_x, k_y, k_z, k_f) space
MRSI Readouts

Phase Encoding

Echo-planar spectroscopic imaging (EPSI)

DAQ

G_Z

k_z

k_f

DAQ

G_Z

k_z

k_f

Hyperpolarization Methods
Accelerated MRSI Strategies

Comparison of Accelerated MRSI Strategies

Tradeoffs

- Speed
- SNR efficiency
- Robustness to hardware imperfections
- Bandwidth
- Resolution

<table>
<thead>
<tr>
<th></th>
<th>Flyback EPSI</th>
<th>Symmetric EPSI</th>
<th>Concentric Rings</th>
<th>Spiral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>SNR</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Robustness</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>--</td>
</tr>
</tbody>
</table>

Spectral Decomposition

- **Dixon/IDEAL** (Iterative decomposition of water and fat with echo asymmetry and least-squares estimation) methods: *Originally developed for fat/water imaging*

- Reconstruct individual metabolite images based on known chemical shifts

- Multiple TEs: minimum # of TEs = Npeaks (*+1 if B0 field map estimated required*)
Spectral Decomposition: Spiral CSI

RF Spiral Readouts

TE_1

TE_2

TE_3

TE_4

Matrix Inversion

FFT

Spectral Images

Δf = 0 Hz

Δf = 614 Hz

Δf = 433 Hz

Δf = 272 Hz

Spectral Decomposition: Oversampled Spirals

Gordon et al., MRM 2013
Metabolite-specific Imaging

- Idea: Excite only a single metabolite resonance, followed by any imaging-based readout
- Methods:
 - Single-metabolite Spectral-spatial excitation
 - Fast imaging readout (EPI, spiral)
- Fast!
- Requires chemical-shift separation of metabolites, sensitive to B_0 inhomogeneities

Spectral-spatial Excitation Single-shot Spiral MRI

Cunningham JMR 2008, Lau MRM 2010 NMR Biomed 2011
Metabolite-specific Imaging

- Spectral-spatial excitation of individual metabolites with variable flip angles
- Ramp sampled, symmetric EPI
- 16 slices of pyruvate and lactate images in 2 s

Cunningham et al. JMR 2008.
Clinical Metabolite-specific Imaging

Cardiac imaging with Spiral Readout

Brain imaging with EPI Readout

Technique Comparison

<table>
<thead>
<tr>
<th>Technique</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSI</td>
<td>Robust to off-resonance</td>
<td>Slow</td>
</tr>
<tr>
<td></td>
<td>Flexible spectral content</td>
<td></td>
</tr>
<tr>
<td>Spectral Decomposition (IDEAL/Dixon)</td>
<td>Speed+SNR</td>
<td>Peak locations must be known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limits on sequence parameters (TE)</td>
</tr>
<tr>
<td>Metabolite-specific Imaging</td>
<td>Speed+SNR (max!)</td>
<td>Sensitive to off-resonance</td>
</tr>
<tr>
<td></td>
<td>Works well with [1-13C]pyruvate spectrum</td>
<td>Requires spectrally separated metabolites</td>
</tr>
</tbody>
</table>
Parametrizations: Kinetic Modeling vs. alternatives

Numerous options

- Kinetic modeling (e.g. k_{PL})
- Lactate/pyruvate

I advocate for unidirectional k_{PL} model

- Insensitive to bolus delivery with any sampling strategy
- Incorporate effects of RF pulses
- Compare k_{PL} (1/s) across sites, imaging protocols, and anatomy
- Simple (good for low SNR)

Choice of Model

- Models evaluated by Akaike Information Criteria (AIC) which balances fit quality with number of model parameters
 a. Pyr-lac (all lumped)
 b. Extravascular and intravascular compartments
 c. Extravascular/extracellular, intracellular, and intravascular compartments

- Assumptions
 - Neglect \(k_{LP} \), lactate transport. Gamma-variate pyruvate input
 - Pyruvate input estimated from heart voxels
 - \(T_{1P} = 45s, T_{1L} = 25s \)
“Input-less” Fitting

- Actual pyruvate signal as input, change in lactate as output
- No assumptions or fitting of pyruvate input
- **Pros**: Simple, insensitive to fitting errors in pyruvate (e.g. incorrect bolus shape), works with any sampling strategy
- **Cons**: No estimate of perfusion

\[
M_{Z,L}[n+1] = M_{Z,L}[n]S_{RF,L}[n] \exp(-R_{IL} \ast TR) + \\
M_{Z,P}[n]S_{RF,P}[n] \exp(-R_{1P} - k_{PL})TR + k_{PL} \exp(-R_{1L}TR) / R_{1P} - R_{1L} + k_{PL}
\]

https://github.com/agentmess/hyperpolarized-mri-toolbox
Hyperpolarized-MRI-Toolbox

https://github.com/agentmess/hyperpolarized-mri-toolbox

- MATLAB tools for designing and analyzing HP MRI
- Open-source, **contribute your coolest code!**

Current Features
- EPSI waveforms
- Spectral-spatial RF
- Variable flip angles
- Kinetic Modeling
- **Numerical phantom**

Coming soon: Datasets for standardized comparisons of analysis methods