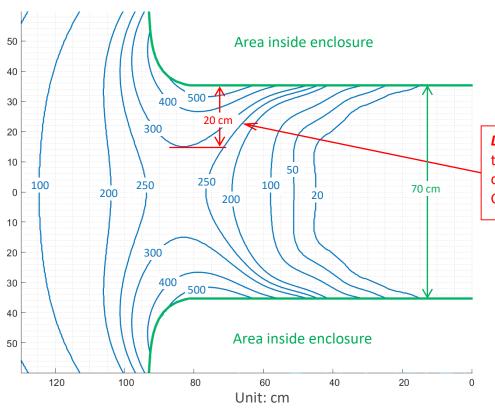

Spatial gradient contour maps for Voyager systems

This contour map shows the spatial gradient for **Voyager** system (which is a 1.5T system with 70cm patient bore and **LCCw** magnet.)

The map covers a range of ± 2 meters from isocenter along the magnet's axis, and ± 1.6 meters across the magnet.


Minimum entry spatial gradient:
To reach the center of the magnet requires passing through at least a SG=270 G/cm.

The contour locations and patient bore dimensions are accurate to isocenter. However, the enclosure's exterior shape is approximate, due to differences between enclosure designs.

Detail contour maps for Voyager systems

D can be read from the map, the table, or the plot. At 300 G/cm, D is 20 cm.

Spatial Gradient, G/cm	Distance D , cm
270	35*
280	25
300	20
 ∕⁄ 330	15
370	10
410	7.5
460	5
640	0

* This is the minimum entry SG, where **D** reaches half of the bore diameter.

o shows obe read occurate

25

200

300

Spatial gradient, G/cm

500

600

400

This contour map zooms in on the area near the mouth of the magnet. The map shows how far a given contour reaches pasting the bore wall. This is distance D-it can be read from the contour map, from the table or from the plot. The enclosure shape is accurate in this plot.

An example – marked in red in the plot, the table, and the graph – shows that for SG of 300 G/cm, distance D is 20 cm. This leaves an "opening" of 30 cm.

700