Hyperpolarized MRI Technology Resource Center

The Hyperpolarized MRI Technology Resource Center (HMTRC)  is a Biomedical Resource Technology Center funded by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) focuses on the development and dissemination of new advances in dissolution DNP techniques and instrumentation, specialized data acquisition methodology, and analysis software for biomedical research. 

Hyperpolarized MR is an emerging molecular imaging method to monitor enzymatic conversions through key, previously-inaccessible biochemical pathways.  Through numerous studies to date, hyperpolarized carbon-13 MR has shown outstanding research and potential clinical value, but requires major technological development to realize its full potential.  This motivation, coupled with the rapidly expanding interest at other sites, compelled us to create the “Hyperpolarized MRI Technology Resource Center”.  

This center is based on three Technology Research & Development (TR&D) projects led by experienced hyperpolarized MR researchers.  TR&D1 is focused on DNP polarizer and MR acquisition development and pre-clinical animal studies.  TR&D2 focuses on the development of new robust and realistic pre-clinical models for HP MR studies, optimization of current HP probes & investigation of new HP probes, and the development of methods that provide appropriate correlative pathologic, biologic and other imaging data for understanding and validating HP MR findings.  TR&D3 focuses on the development of a free open-source specialized data analysis platform for HP MR data reconstruction and interpretation.  All TR&D developments are driven in a push-pull interaction by the independently funded Collaborative Projects and the technology resources of the center are utilized by Service Projects and disseminated to all interested investigators through hands-on workshops, symposia, visits/training, formal courses, and our center website.  

The goal of the HMTRC is to collaboratively develop new technology to advance this field in order to better identify and understand human disease and ultimately to translate and disseminate these techniques for improved healthcare.  


Featured Publication*

Title:  Spatio-temporally constrained reconstruction for hyperpolarized carbon-13 MRI using kinetic models.

​Authors:  Maidens J, Gordon JW, Chen HY, Park I, Van Criekinge M, Milshteyn E, Bok R, Aggarwal R, Ferrone M, Slater JB, Kurhanewicz J, Vigneron DB, Arcak M, Larson PEZ

Abstract:
We present a method of generating spatial maps of kinetic parameters from dynamic sequences of images collected in hyperpolarized carbon-13 MRI experiments. The technique exploits spatial correlations in the dynamic traces via regularization in the space of parameter maps. Similar techniques have proven successful in other dynamic imaging problems such as dynamic contrast enhanced MRI. In this paper we apply these techniques for the first time to hyperpolarized MRI problems, which are particularly challenging due to limited SNR. We formulate the reconstruction as an optimization problem and present an efficient iterative algorithm for solving it based on the alternation direction method of multipliers (ADMM). We demonstrate that this technique improves the qualitative appearance of parameter maps estimated from low SNR dynamic image sequences, first in simulation then on a number of data sets collected in vivo. The improvement this method provides is particularly pronounced at low SNR levels.


Title: Spatio-temporally constrained reconstruction for hyperpolarized carbon-13 MRI using kinetic models. 2018

 


***Please acknowledge NIBIB P41EB013598 in any publications that have benefitted from this center***   

 

Links to other NIH Resource Centers

     

 

 


***If you would like to donate to the Department of Radiology and Biomedical Imaging or to Dr. Daniel Vigneron, please complete the online giving form. To support this new imaging development, under choose a designation, select "other" and enter Dr. Daniel Vigneron. Your kind contribution and support is greatly appreciated by the Department of Radiology and Biomedical Imaging and the HMTRC Executive Members.***