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a b s t r a c t

High polarization of nuclear spins in liquid state through dynamic nuclear polarization has enabled the
direct monitoring of 13C metabolites in vivo at very high signal-to-noise, allowing for rapid assessment of
tissue metabolism. The abundant SNR afforded by this hyperpolarization technique makes high-resolu-
tion 13C 3D-MRSI feasible. However, the number of phase encodes that can be fit into the short acquisi-
tion time for hyperpolarized imaging limits spatial coverage and resolution. To take advantage of the high
SNR available from hyperpolarization, we have applied compressed sensing to achieve a factor of 2
enhancement in spatial resolution without increasing acquisition time or decreasing coverage. In this
paper, the design and testing of compressed sensing suited for a flyback 13C 3D-MRSI sequence are pre-
sented. The key to this design was the undersampling of spectral k-space using a novel blipped scheme,
thus taking advantage of the considerable sparsity in typical hyperpolarized 13C spectra. Phantom tests
validated the accuracy of the compressed sensing approach and initial mouse experiments demonstrated
in vivo feasibility.

! 2008 Elsevier Inc. All rights reserved.

1. Introduction

Carbon-13 spectroscopy has traditionally been limited by low
signal strength. With the development of techniques to maintain
hyperpolarization of carbon-13 in liquid state [1], it has become
possible to use 13C substrates (tracers) for medical imaging [2].
More recent studies have used the metabolically active substrate
[l-13C]pyruvate to examine its conversion to [l-13C]lactate,
[l-13C]alanine, and 13C-bicarbonate [3–5]. Spectroscopic examina-
tion of these metabolic pathways in the presence and absence of
disease has enormous diagnostic potential. Specifically, it has al-
ready been shown that the levels of 13C metabolic products differ
between disease and non-disease states in a mouse model of pros-
tate cancer [5]. As pointed out in [5], partial voluming may compli-
cate the interpretation of non-disease spectra because of the small
size of the normal mouse prostate. With the abundant SNR avail-
able in hyperpolarized studies, it would be beneficial to sacrifice
some signal for improved spatial resolution, but the time limitation

imposed by T1 relaxation severely restricts the possible number of
phase encode steps.

Recent advances in mathematical theory have opened the
door for accurate reconstruction of sparse signals from sub-ny-
quist sampling [6,7]. Less technical descriptions from the same
authors, focusing on the practical limits of compressed sensing,
have shown reconstructions from realistic data sets [8,9]. In
addition, Lustig et al., in an exposition of the application of com-
pressed sensing to MRI, shows that many MR images exhibit a
high degree of sparsity and provides high quality proof of con-
cept results drawn from multi-slice fast spin–echo brain imaging
and 3DFT time of flight contrast-enhanced angiography [10].
Lustig lists three criteria for the successful application of com-
pressed sensing: (1) the data have a sparse representation in a
transform domain; (2) the aliasing from undersampling be inco-
herent in that transform domain; and (3) a non-linear recon-
struction be used to enforce both sparsity of data and
consistency with measurements. The successes in [10], coupled
with the sparsity in hyperpolarized spectra, make hyperpolarized
13C spectroscopic imaging a logical choice for the application of
compressed sensing. In other words, for hyperpolarized 13C, the
first criterion is satisfied by the inherent sparseness of hyperpo-
larized spectra, and the third criterion can be met by using the
same non-linear reconstruction from [10]. The primary challenge
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then is to satisfy the second criterion: developing an undersam-
pling approach to achieve suitable incoherent aliasing.

The sparsity of hyperpolarized spectra has been previously
exploited for accelerated imaging [11,12] by using a priori knowl-
edge of metabolite resonance locations and linewidths (factor of
4 acceleration reported in a phantom demonstration [11]). Com-
pressed sensing, however, requires no assumptions except that
the underlying data are sparse in some domain.

A 3D-MRSI sequence using flyback echo-planar readout gradi-
ents [13,14] provides a fast method for acquiring hyperpolarized
spectra and is less sensitive to timing errors, eddy currents, and
B0 inhomogeneity than EPI and spiral readout schemes, especially
in vivo. This paper presents a methodology for accelerating the
acquisition of hyperpolarized spectra by a factor of 2 using com-
pressed sensing in conjunction with a modified flyback echo-pla-
nar 3D-MRSI sequence. A few initial phantom and in vivo
examples are presented as proof of concept.

2. Theory

2.1. Pulse sequence

The pulse sequence developed for this study builds on the one
diagrammed in Fig. 1, which is a double spin-echo sequence with
a flyback echo-planar readout [14]. Details of the flyback design
are given in [13]. As explained in [14], a spin-echo sequence was
desired in order to mitigate the effects of B0 inhomogeneity and al-
low for a full echo acquisition. Owing to its insensitivity to transmit
gain, this double adiabatic sequence outperforms a conventional
spin–echo sequence in preserving hyperpolarization over the re-
peated excitations needed for the phase encodes in an MRSI acqui-
sition [14]. Ultimately, this sequence reads out a rectilinear k-space
trajectory, with a typical result being 59 ! 8 ! 8 ! 16 (kf–kx–ky–kz)
4D k-space data.

2.2. Key results from compressed sensing literature

Fundamentally, compressed sensing claims to perfectly recon-
struct sparse signals of length N from a subset of samples. For
example, suppose a length N discrete signal f consists of M non-
zero points. Then, with extremely high probability, f can be recov-
ered exactly from K Fourier measurements where

K P Const "M log N ð1Þ

and the solution is found by solving the convex minimization
problem

min
X

n

j g½n& j s:t: FKfg½n&g ¼ y ð2Þ

where Fk is the Fourier transform evaluated at K locations and y is
the set of K measured Fourier coefficients [8]. In words, Eq. (2)
states that for all reconstructions g[n] whose Fourier coefficients
match those at the K measured positions, the unique and correct
solution is the one that minimizes the absolute sum of g, i.e. the
‘1 norm in the object domain. The theorems of compressed sens-
ing are actually much more general than this concrete example
suggests. In other words, the signal f only needs to be sparse in
some domain, not necessarily the object domain, and the K mea-
surements do not necessarily have to be Fourier measurements.
From a practical standpoint, the application specific values for M,
N, and the constant multiplier determine the feasibility of com-
pressed sensing. Additionally, a real-world signal will never con-
sist of just M non-zero points in any domain, but it will usually
be well approximated by M sparse transform coefficients. For
example, the fidelity with which compressed sensing reproduces
an M-term wavelet approximation, i.e. the sparse domain being
the wavelet domain, could serve as a benchmark for real-world
signals such as NMR spectra [9]. For various N = 1024 test signals
in [8], Candes empirically determined that for compressed sensing
to match the accuracy of an M-term wavelet representation,
K ( 3M ) 5M measurements were required, which was also ob-
served in [10]. As mentioned previously, for the actual implemen-
tation of compressed sensing, the K measurements must be
collected with a sampling pattern that produces incoherent alias-
ing in the domain, such as the wavelet domain, where the signal
shows sparsity [10]. A random sampling pattern in k-space almost
always meets this criterion.

At this point, it is interesting to consider the connection be-
tween compressed sensing and existing techniques in NMR, such
as maximum entropy [15,16] and minimum area [17] reconstruc-
tion, used for the related problem of computation of spectra from
short, noisy data records. Recently, Stern et al. showed that a spe-
cific form of iterative thresholding, a technique similar to maxi-
mum entropy and minimum area reconstruction, is equivalent to
the minimum ‘1 norm reconstruction in compressed sensing
[18]. Additionally, Stern explains how ‘1 norm reconstruction gives
insight into the performance of maximum entropy and minimum
area reconstruction. Thus, compressed sensing could be viewed
as a generalization of existing NMR techniques.

2.3. 3D-MRSI Signal

The most straightforward application of compressed sensing to
hyperpolarized 3D-MRSI would be to undersample in kx and ky. For
example, to achieve 16 ! 8 spatial resolution in the time of 8 ! 8
phase encodes, i.e. a speedup factor of 2, one could simply collect
8 ! 8 of the phase encodes in a conventional 16 ! 8 scan (K = 64,
N = 128). However, our wavelet simulations have shown that such
a small N leads to a relatively largeM and thus does not provide en-
ough sparsity to exploit. A better strategy would be to attempt
undersampling in the kf and kx dimensions, considering that typical
hyperpolarized acquisitions are inherently sparse in the spectral
dimension. As shown in the wavelet simulations of Fig. 2, a signal
of this type (spectral dimension and one spatial dimension) exhibits
considerable sparsity. (Note that wavelet transforms were chosen
because they do a good job of sparsifying NMR spectra [9], though
other choices are possible aswell.) The key point is that themajority
of the sparsity occurs in the spectra and therefore the time domain

Fig. 1. Double spin–echo sequence timing diagram. The RF consists of a small tip
excitation followed by two adiabatic pulses (phase channel not shown). Phase en-
coding is along x and y while the 59-lobe flyback readout is along z. An echo is
formed during the middle of the flyback readout with TE = 140 ms.
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should be undersampled. However, the implementation of time do-
main undersampling is not at all straightforward, as the next section
demonstrates. A scheme to undersample in the time domain as well
as in one spatial domain was employed, mainly exploiting spectral
sparsity but some spatial sparsity as well.

2.4. Implementation of kf–kx incoherent sampling

The key to implementing a k-space trajectory that randomly
undersamples in kf–kx lies in the random sampling of kf = t using
blips. Figs. 3 and 4 illustrate a scheme that achieves kf sub-sam-

pling by hopping back and forth between adjacent kx lines during
a flyback readout. In this manner, data from two kf–kx lines are ac-
quired during a single phase encode, in effect randomly undersam-
pling in time. Thus, 16 ! 8 resolution can be achieved in half the
time by collecting 8 ! 8 of the readouts in a conventional 16 ! 8
scan. This approach is somewhat similar to the k–t sparse scheme
in [19,20], but here we apply gradients to move around in kf space
instead of reordering phase encodes. This blipped scheme ad-
dresses the design challenge of generating sufficient incoherent
aliasing through random undersampling, in other words meeting
the second criterion for the successful application of compressed
sensing. Without the blips, there would be too much structure to
the undersampling, which would lead to coherent aliasing. To reit-
erate, the design in Fig. 3 achieves twofold undersampling by
jumping between two lines. A design to achieve threefold under-
sampling would have to jump between three lines, and a design
to achieve fourfold undersampling would have to jump between
four lines. Finally, we used the Duyn method [21,22] to measure
the actual k-space trajectory traced out by our blips. As expected,
on a modern clinical scanner with eddy current compensation,
the measured k-space trajectory closely matched the intended
one. In other words, the blips produced minimal side effects and
unintended k-space deviations were negligible.

3. Experimental

3.1. Pulse sequence and hardware

The source code from [14], originally a free induction decay
(FID) MRSI sequence, was modified to incorporate triangular gradi-
ent blips. In an attempt to minimize eddy current effects, the blips
were made 0.8 ms, relatively wide considering the time between
adjacent flat flyback portions was 1.16 ms. The amplitude of the
blips was calculated by the source code so that each blip’s area
equaled the area in a phase encode increment. As in [5], a variable
flip angle (VFA) scheme [23], i.e. increasing flip angle over time to
compensate for the loss in hyperpolarized signal, was used in the
in vivo experiments. The actual nth flip angle h[n] precalculated
by the source code for a given acquisition of N flips was as follows:

h½n& ¼
90* if n ¼ N
arctanðsinðh½nþ 1&ÞÞ if n < N

!
ð3Þ

For example, in our acquisition with N = 8 ! 8 = 64 readouts,
h[64] = 90", h[63] = arctan(sin(90")) = 45", h[62] = arctan(sin(45")) =
35.3", . . .,h[1] = 7.2". Calibration of the pulse angles was performed
on the day of each study using a prescan of a corn oil phantom. In
addition, for the in vivo experiments, as in [5], reordering of phase
encodes to collect data near the k-space origin first was also em-
ployed. For all experiments, T2-weighted images were acquired
with a fast spin–echo sequence, after which MRSI data, phase en-
code localized in x/ywith flyback readout in the S/I direction z, were
collected. All experiments were performed on a General Electric EX-
CITE 3T (Waukesha, WI) clinical scanner equipped with 40 mT/m,
150 mT/m/ms gradients and a broadband RF amplifier. Custom-
built, dual-tuned 1H/13C transmit/receive coils were used for all
phantom and animal experiments.

3.2. Reconstruction

For acquisitions without blipped gradients, the reconstruction
procedure, carried out with custom MRSI software [24], was as
follows: (1) sample the raw flyback data to obtain a 4D matrix of
k-space data; (2) apodize each FID and apply a linear phase correc-
tion to the spectral samples as described in [13] to account for the
tilted k-space trajectory characteristic of a flyback readout; and (3)

Fig. 2. Demonstration of wavelet compressibility of a 13C spectroscopic signal. A
row of magnitude spectra (64 ! 16) from a 3D-MRSI phantom data set (see Fig. 5 for
examples of rows of spectra) was taken as the test signal. Note that the 59 spectral
points from the 59 flyback lobes were zero-padded to 64 because the wavelet
software we used required dyadic numbers. (a) The 16 original spectra. (b) A 2D
Daubechies wavelet transform was applied to the 64 ! 16 data, after which the top
10% wavelet coefficients were retained and the inverse 2D wavelet transform taken.
(c) The magnitude error between (a) and (b). Note that (a)–(c) have the same y-axis
scale. The 64 ! 16 data were reconstructed very accurately from only 10% of their
wavelet coefficients, showing that the signal of interest exhibits considerable fun-
damental sparsity.

Fig. 3. Blipped scheme for kf–kx sub-sampling. (Top) The only modification to the
pulse sequence shown in Fig. 1 is the addition of blips during the rewind portions of
the flyback readout. The area of each blip is the area in an x-phase encode step.
Bottom: Associated order of k-space readout. A single readout now covers two kf–kx
lines.
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perform a 4D-Fourier transform with zero-padding of the spectra.
For blipped acquisitions, the processing pipeline was modified in
that the flyback sampling was performed in MATLAB (Mathworks
Inc., Natick, MA) and the k-space points missed by the blipped tra-
jectory were iteratively filled in using a non-linear conjugate gradi-
ent implementation of Eq. (2) [10]. Specifically, the reconstruction
procedure for blipped acquisitions was as follows: (1) order the
raw blipped flyback data to obtain a 4D matrix of k-space data
missing half of its kf–kx points; (2) inverse Fourier transform the
fully sampled ky and kz dimensions; (3) iteratively fill in the miss-
ing kf–kx points in the 4D matrix using the algorithm from [10]; (4)
forward Fourier transform the ky and kz dimensions to put the data
back into the form of a filled kf–kx–ky–kz set; (5) apodize each FID
and apply a linear phase correction; and (6) perform a 4D-Fourier
transform with zero-padding of the spectra. Transforming in the
fully sampled ky and kz dimensions allowed us to separate the mul-
ti-dimensional reconstruction problem into many separable 2D
reconstructions, reducing the memory requirements and allowing
parallel processing as was done for the 3D angiography example
in [10]. The total reconstruction time for the normal and com-
pressed sensing reconstructions were ,5 s and ,20 min, respec-
tively, on a 1-GHz, 2 GB RAM Sun workstation running Red Hat
Linux. The compressed sensing reconstruction was implemented
in MATLAB. We expect significant speed improvement with code
optimization.

3.3. Phantom

Experiments on a cylindrical phantom (Fig. 5a) (n = 3, with
repositioning for separate trials) containing 13C-labeled pyruvate/
pyruvate–H2O, lactate, and alanine in three respective inner
spheres, were performed to verify the accuracy of the compressed
sensing reconstruction. For both unblipped and blipped acquisi-
tions, a flip angle of 10", TE = 140 ms, TR = 2 s, FOV = 8 cm ! 8 cm,
and 16 ! 8 resolution were used. The 16 ! 8 unblipped acquisition
with the standard reconstruction served as the gold standard. For
the 16 ! 8 blipped acquisition, acquired in half the time, the mod-
ified processing pipeline as discussed in the previous section was
used. The sparsifying transform was a 1D length-4 Daubechies
wavelet transform in the spectral dimension, meaning the algo-

rithm presumed sparsity of the spectral peaks and tried to mini-
mize the ‘1 norm of a wavelet transform of the kf data. In
addition, as is commonly done [10], a total variation (TV) penalty
was added to promote sparsity of finite differences. The weights gi-
ven to the wavelet transform and TV penalty, and thus the amount
of denoising and data fidelity, were selected manually by testing a
few values on one phantom acquisition. The same weights were
used for subsequent phantom and animal experiments. Specifi-
cally, using the software described in [10], which normalizes the
maximum signal in the object domain to 1, the TV penalty and
transform weights were both 0.01.

3.4. Mouse

We performed normal and compressed sensing comparisons for
three separate mice. For the in vivo experiment whose results are
shown in Fig. 6, a prototype DNP polarizer developed and con-
structed by GE Healthcare (Malmö, Sweden) was used to achieve
,23% liquid state polarization of [l-13C]pyruvate. Due to unavail-
ability of the prototype machine for the second and third in vivo
comparisons, a HypersenseTM DNP polarizer (Oxford Instruments,
Abingdon, UK), which is a commercial version of the prototype ma-
chine, was used to achieve polarizations of ,11% and ,18%,
respectively. The polarization was measured by extracting a small
aliquot of the dissolved solution and measuring its FID intensity
with a custom low-field spectrometer. ,300 lL (,80 mM) samples
were injected into a surgically placed jugular vein catheter of a
Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mouse
within ,20 s of dissolution. The particular TRAMP mouse for the
first trial had a large prostate tumor with many relatively homog-
enous tumor voxels across the FOV, making quantitative compari-
sons easier. The other two mice had smaller, yet still relatively
homogeneous, tumors. For each trial, two runs were done (,2 h
apart), once for an unblipped 59 ! 8 ! 8 ! 16 standard acquisition
and again for a blipped 59 ! 16 ! 8 ! 16 compressed sensing
acquisition. The acquisition parameters for both runs were
TE = 140 ms, TR = 215 ms (total acquisition time of 14 s), variable
flip angle activated, reordered phase encodes, and
FOV = 4 cm ! 4 cm. The blipped acquisition, using 8 ! 8 of the
readouts from a conventional 16 ! 8 scan, was acquired after the

Fig. 4. Blipped patterns to cover 16 kf–kx lines, resulting coverage, and point spread function. (a) Actual eight blipped patterns used to cover 16 kf–kx lines in a pseudo-random
manner. (b) Associated k-space sampling. Because twice as much k-space is covered in the time of eight phase encodes, half of the 59 ! 16 kf–kx points are missing (missing
points are black). (c) 2D point spread function of pseudo-random pattern in (b).
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unblipped one. All animal studies were carried out under a proto-
col approved by the Institutional Animal Care and Use Committee.
A more detailed description of the polarization and animal care
procedures can be found in [4,5].

4. Results and discussion

4.1. Phantom

Fig. 5 shows a side-by-side comparison of a slice of final pro-
cessed spectra from representative 16 ! 8 unblipped and blipped
acquisitions (corresponding to Trial 1 in Table 1), with the
blipped acquisition taken immediately after the unblipped one.
Qualitatively, the spectra match up extremely well. Table 1 gives
a quantitative comparison of the two reconstructions for the
three trials, listing SNR and metabolite peak ratios. The acceler-
ated acquisition ratios were always within 10% of those from the
fully sampled acquisitions, which was about the same as the
accuracy reported in [11]. Because we typically draw biological
conclusions from final processed spectra, SNR was calculated
with the magnitude spectra after apodization and zero-padding.
Typically, halving the scan time, as was done for the blipped
acquisition, would reduce SNR by a factor of square root of 2.
Due to the denoising properties of the compressed sensing
reconstruction combined with apodization, the SNR did not drop.
The ‘1 penalty used in compressed sensing is essentially a deno-
ising procedure, also referred to in the literature as basis-pursuit
denoising [25] and is closely related to wavelet denoising

schemes [26–28]. The ‘1 reconstruction transforms the signal
into a domain in which the signal exists in only a few significant
coefficients, whereas noise resides in the majority of coefficients,
and filters the noise by heavily penalizing the small coefficients.
In addition, in compressed sensing, the undersampling itself gen-
erates incoherent aliasing which appears as noise [10], which is
penalized and filtered. Thus, the process of the ‘1 reconstruction
picking a solution to the compressed sensing problem, in other
words the underdetermined problem caused by undersampling,
has the natural side effect of denoising. Therefore, the com-
pressed sensing SNR is controllable in the sense that merely
adjusting the ‘1 denoising parameters in the reconstruction
would lead to higher SNR. However, too much denoising could
lead to metabolite peak height distortion manifested by underes-
timating the true peak height. In this study, we tested denoising
parameters within an order of magnitude as those in [10] and
selected ones that performed well. As for the peak ratio calcula-
tions, the metabolite peak heights used were average peak
heights over voxels with little or no partial voluming. The
metabolite ratios for normal and compressed sensing data sets
were similar, suggesting compressed sensing could be compati-
ble with metabolite quantitation.

4.2. Mouse

Fig. 6 shows a comparison of 8 ! 8 mouse tumor data from a
conventional scan and data from the samemouse acquired,2 h la-
ter with a 16 ! 8 compressed sensing acquisition. Qualitatively,
the two sets of data appear similar, both showing elevated lactate

Fig. 5. 16 ! 8 phantom comparison of normal vs. undersampled. (a) T2-weighted image of 13C phantom done before spectral acquisitions. (b) Spectra from normal, unblipped
acquisition corresponding to the highlighted voxels from (a). (c) Spectra from compressed sensing reconstructed, blipped acquisition corresponding to the highlighted voxels
from (a).
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characteristic of cancer tissue in the TRAMP model. One difference
is that due to lower starting SNR, residual coherent aliasing, and
the sparsifying effect of the ‘1 reconstruction, the 16 ! 8 mouse
data do not show tiny peaks such as the alanine and pyruvate–
H2O bumps seen in the single spectrum of Fig. 6a. The reason is
that high contrast spectral peaks result in large distinct sparse
coefficients which can be recovered even when vastly undersam-
pled, whereas very small peaks close to the noise floor could be
submerged by both apparent noise caused by aliasing [10] and
the true underlying noise that they would not be recoverable. As
discussed in the artifacts section of [10], with increased undersam-
pling the most distinct artifacts in compressed sensing are not the
usual loss of resolution or increase in aliasing, but the loss of very
small peaks. For the specific data shown in Fig. 6, the SNR of the
alanine and pyruvate–H2O bumps in the 8 ! 8 acquisition
were 17.7 and 14.3. By going to half the voxel size with 16 ! 8
resolution, the true SNR in each voxel would be halved, in other

words reduced to about 8. In addition, the extra apparent noise
caused by undersampling and reconstruction inaccuracies [10]
would further hurt the ‘1 reconstruction. According to the litera-
ture, coefficients can be recovered up to a multiple of the noise var-
iance [29,30], and Lustig et al., describes this phenomenon for MRI
in more detail while providing some examples [10]. For our spec-
tra, we noticed that we needed an SNR of about 6–7 to distinguish
a spectral peak from random spikes in the noise floor. Therefore,
we believe the disappearance of the small peaks can be attributed
to their being too close to the noise floor. In this scenario, no
amount of denoising will recover the peaks, which is an important
limitation of compressed sensing. Compressed sensing works best
for applications with high SNR that are acquisition time limited
such as measuring the lactate/pyruvate ratio in tumors. The second
and third in vivo trials showed similar results except for a lower
lactate/pyruvate ratio because of the less advanced disease stage
of those tumors. Table 2 gives a quantitative comparison of the

Fig. 6. Comparison of 8 ! 8 normal mouse data and 16 ! 8 undersampled mouse data in a region of prostate tumor. (a) Normal 8 ! 8 data. The left shows the spectrum with
the highest lactate peak, the middle shows the T2-weighted anatomical image, and the right shows spectra highlighted in the anatomical image. (b) Corresponding 16 ! 8
data acquired 2 h after the 8 ! 8 data.

Table 1
Comparison of SNR and metabolite peak ratios for normal vs. compressed sensing
phantom data

Peak SNR Ala/Lac
ratio

Pyr/Lac
ratio

Pyr–H2O/lac
ratio

Trial 1
Normal 16 ! 8 63.2 .55 .46 .43
Compressed sensing 16 ! 8 64.8 .55 .47 .41

Trial 2
Normal 16 ! 8 59.7 .94 .50 .47
Compressed sensing 16 ! 8 68.7 .89 .46 .42

Trial 3
Normal 16 ! 8 52.5 .66 .40 .40
Compressed sensing 16 ! 8 62.4 .60 .37 .36

Table 2
Comparison of SNR and metabolite peak ratios for normal vs. CS mouse data

Peak SNR Lac/Pyr
ratio

Standard deviation
of Lac/Pyr ratio

Trial 1
Normal 8 ! 8 133.9 2.44 .432 (n = 16 voxels)
Compressed sensing 16 ! 8 107.4 2.51 .558 (n = 14 voxels)

Trial 2
Normal 8 ! 8 41.1 1.54 .315 (n = 4 voxels)
Compressed sensing 16 ! 8 34.3 1.29 .353 (n = 8 voxels)

Trial 3
Normal 8 ! 8 75.3 1.36 .246 (n = 4 voxels)
Compressed sensing 16 ! 8 64.8 1.38 .522 (n = 8 voxels)
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two reconstructions for each trial, showing SNR and lactate/pyru-
vate peak ratios. Halving the voxel size would normally reduce
SNR by a factor of 2, but due to ‘1 denoising and apodization, as dis-
cussed in the previous section, the final SNR for the 16 ! 8 data
was only 14–20% lower than that of the 8 ! 8. Finally, as shown
in Table 2, the ratios and standard deviations of the ratios match
up reasonably well.

4.3. Limitations and future work

The parameters controlling the level of denoising, and thus
the final SNR, in this work were chosen manually. The parame-
ters were chosen to strike a balance between denoising and
the data fidelity constraint of Eq. (2). In the future, an automatic
parameter choice scheme would be desirable. In addition, by
employing more of the techniques in [10], such as phase estima-
tion and variable density sampling patterns, it should be possible
to perform more denoising and recover a higher SNR percentage
without sacrificing data fidelity. Since the distribution of energy
in k-space is localized close to the k-space origin, variable den-
sity sampling corresponding to that distribution has a better ini-
tial signal to aliasing interference ratio than uniform
undersampling. It was reported in [10] that variable density
schemes result in faster convergence and significantly better
overall reconstruction quality and we expect our case to perform
in the same way. In addition, investigation into different wavelet
sparsifying transforms could yield further performance enhance-
ments. Building on the blipped methodology presented in this
paper to develop a sampling pattern in which kf, kx, and ky are
undersampled could also provide a substantial performance gain
by exploiting 3D sparsity and spreading aliasing into three
dimensions, thus producing more incoherent aliasing. Lastly,
combining parallel imaging and compressed sensing could be a
viable avenue of investigation. With the abovementioned
developments, much higher rates of acceleration might be
obtainable in future hyperpolarized C-13 metabolic imaging
studies.

5. Conclusions

An initial design and results for hyperpolarized 13C com-
pressed sensing were presented. Key to the design was the
exploitation of sparsity in hyperpolarized spectra and an imple-
mentation that used blips to undersample in kf and kx. Phantom
experiments showed low SNR loss while preserving accuracy of
metabolite peak ratios, and mouse trials demonstrated the
in vivo feasibility of improving spatial resolution without
increasing scan time in hyperpolarized 13C flyback 3D-MRSI. In
addition, we discussed the unique properties of the ‘1 recon-
struction in compressed sensing, such as wavelet denoising and
the tendency to lose low contrast features such as small peaks.
This study has demonstrated feasibility and potential value for
applying compressed sensing to hyperpolarized 13C spectroscopy,
and with further technique development even better perfor-
mance is expected.
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