Hyperpolarized MRI Technology Resource Center

Our center is dedicated to the development of state-of-the-art imaging techniques, particularly on instruments that will use Carbon-13 based compounds. Our aim is at disseminating optimal new hyperpolarized (HP) 13C MR technologies with optimal training/documentation to advance these emerging molecular imaging methods. Hyperpolarized 13C MR has outstanding research and clinical value, however most aspects of this technology (instrumentation, agent chemistry, DNP/dissolution methodology, MR acquisition, and data analysis) are currently suboptimal and require focused technological development to realize their full potential. The center includes three Technology Research & Development (TR&D) projects led by experienced hyperpolarized MR researchers.


Featured Publication*

Cancer recurrence monitoring using hyperpolarized [1-13C]pyruvate metabolic imaging in murine breast cancer model.

​Authors:  Shin, PJ, Zhu, Z, Camarda, R, Bok, RA, Zhou,AY, Kurhanewicz, J, Goga, A, Vigneron, DB

Purpose:   To study the anatomic and metabolic changes that occur with tumor progression, regression and recurrence in a switchable MYC-driven murine breast cancer model. Serial 1H MRI and hyperpolarized [1-13C]pyruvate metabolic imaging were used to investigate the changes in tumor volume and glycolytic metabolism over time during the multistage tumorigenesis. We show that acute de-induction of MYC expression in established tumors results in rapid tumor regression and significantly reduced glycolytic metabolism as measured by pyruvate-to-lactate conversion. Moreover, cancer recurrences occurring at the tumor sites independently of MYC expression were observed to accompany markedly increased lactate production.  Click on image to acces publication in PubMed.

*Cancer recurrence monitoring using hyperpolarized [1-13C]pyruvate metabolic imaging in murine breast cancer model..  2017


***Please acknowledge NIBIB P41EB013598 in any publications that have benefitted from this center***   


Links to other NIH Resource Centers




***If you would like to donate to the Department of Radiology and Biomedical Imaging or to Dr. Daniel Vigneron, please complete the online giving form. To support this new imaging development, under choose a designation, select "other" and enter Dr. Daniel Vigneron. Your kind contribution and support is greatly appreciated by the Department of Radiology and Biomedical Imaging and the HMTRC Executive Members.***